39 research outputs found

    Comparison of Raw Dairy Manure Slurry and Anaerobically Digested Slurry as N Sources for Grass Forage Production

    Get PDF
    We conducted a 3-year field study to determine how raw dairy slurry and anaerobically digested slurry (dairy slurry and food waste) applied via broadcast and subsurface deposition to reed canarygrass (Phalaris arundinacea) affected forage biomass, N uptake, apparent nitrogen recovery (ANR), and soil nitrate concentrations relative to urea. Annual N applications ranged from 600 kg N ha−1 in 2009 to 300 g N ha−1 in 2011. Forage yield and N uptake were similar across slurry treatments. Soil nitrate concentrations were greatest at the beginning of the fall leaching season, and did not differ among slurry treatments or application methods. Urea-fertilized plots had the highest soil nitrate concentrations but did not consistently have greatest forage biomass. ANR for the slurry treatments ranged from 35 to 70% when calculations were based on ammonium-N concentration, compared with 31 to 65% for urea. Slurry ANR calculated on a total N basis was lower (15 to 40%) due to lower availability of the organic N in the slurries. No consistent differences in soil microbial biomass or other biological indicators were observed. Anaerobically digested slurry supported equal forage production and similar N use efficiency when compared to raw dairy slurry

    Carbon-sensitive pedotransfer functions for plant available water

    Get PDF
    Currently accepted pedotransfer functions show negligible effect of management-induced changes to soil organic carbon (SOC) on plant available water holding capacity (θAWHC), while some studies show the ability to substantially increase θAWHC through management. The Soil Health Institute\u27s North America Project to Evaluate Soil Health Measurements measured water content at field capacity using intact soil cores across 124 long-term research sites that contained increases in SOC as a result of management treatments such as reduced tillage and cover cropping. Pedotransfer functions were created for volumetric water content at field capacity (θFC) and permanent wilting point (θPWP). New pedotransfer functions had predictions of θAWHC that were similarly accurate compared with Saxton and Rawls when tested on samples from the National Soil Characterization database. Further, the new pedotransfer functions showed substantial effects of soil calcareousness and SOC on θAWHC. For an increase in SOC of 10 g kg–1 (1%) in noncalcareous soils, an average increase in θAWHC of 3.0 mm 100 mm–1 soil (0.03 m3 m–3) on average across all soil texture classes was found. This SOC related increase in θAWHC is about double previous estimates. Calcareous soils had an increase in θAWHC of 1.2 mm 100 mm–1 soil associated with a 10 g kg–1 increase in SOC, across all soil texture classes. New equations can aid in quantifying benefits of soil management practices that increase SOC and can be used to model the effect of changes in management on drought resilience

    Linking soil microbial community structure to potential carbon mineralization: A continental scale assessment of reduced tillage

    Get PDF
    Potential carbon mineralization (Cmin) is a commonly used indicator of soil health, with greater Cmin values interpreted as healthier soil. While Cmin values are typically greater in agricultural soils managed with minimal physical disturbance, the mechanisms driving the increases remain poorly understood. This study assessed bacterial and archaeal community structure and potential microbial drivers of Cmin in soils maintained under various degrees of physical disturbance. Potential carbon mineralization, 16S rRNA sequences, and soil characterization data were collected as part of the North American Project to Evaluate Soil Health Measurements (NAPESHM). Results showed that type of cropping system, intensity of physical disturbance, and soil pH influenced microbial sensitivity to physical disturbance. Furthermore, 28% of amplicon sequence variants (ASVs), which were important in modeling Cmin, were enriched under soils managed with minimal physical disturbance. Sequences identified as enriched under minimal disturbance and important for modeling Cmin, were linked to organisms which could produce extracellular polymeric substances and contained metabolic strategies suited for tolerating environmental stressors. Understanding how physical disturbance shapes microbial communities across climates and inherent soil properties and drives changes in Cmin provides the context necessary to evaluate management impacts on standardized measures of soil microbial activity

    Carbon-sensitive pedotransfer functions for plant available water

    Get PDF
    Currently accepted pedotransfer functions show negligible effect of management-induced changes to soil organic carbon (SOC) on plant available water holding capacity (θAWHC), while some studies show the ability to substantially increase θAWHC through management. The Soil Health Institute\u27s North America Project to Evaluate Soil Health Measurements measured water content at field capacity using intact soil cores across 124 long-term research sites that contained increases in SOC as a result of management treatments such as reduced tillage and cover cropping. Pedotransfer functions were created for volumetric water content at field capacity (θFC) and permanent wilting point (θPWP). New pedotransfer functions had predictions of θAWHC that were similarly accurate compared with Saxton and Rawls when tested on samples from the National Soil Characterization database. Further, the new pedotransfer functions showed substantial effects of soil calcareousness and SOC on θAWHC. For an increase in SOC of 10 g kg–1 (1%) in noncalcareous soils, an average increase in θAWHC of 3.0 mm 100 mm–1 soil (0.03 m3 m–3) on average across all soil texture classes was found. This SOC related increase in θAWHC is about double previous estimates. Calcareous soils had an increase in θAWHC of 1.2 mm 100 mm–1 soil associated with a 10 g kg–1 increase in SOC, across all soil texture classes. New equations can aid in quantifying benefits of soil management practices that increase SOC and can be used to model the effect of changes in management on drought resilience

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Comparable Discrimination of Soil Constituents Using Spectral Reflectance Data (400–1000 nm) Acquired with Hyperspectral Radiometry

    No full text
    Currently, a gap exists in inventorying and monitoring the impact of land use and management on soil resources. Reducing the number of samples required to determine the impact of land management on soil carbon (C) and mineral constituents via proximal sensing techniques such as hyper-spectral radiometry can reduce the cost and personnel required to monitor changes in our natural resource base. Previously, we used an expensive, high signal-to-noise ratio (SNR) field spectrometer to correlate soil constituents to hyperspectral diffuse reflectance (HDR), over the 350–2500 nm (VIS-SWIR) wavelength range. This research is an extension of preceding research but focuses solely on the 400–1000 nm (VIS-NIR) region of the electromagnetic spectrum. This region can be measured using less expensive (albeit with lower SNR), miniaturized, field spectrometers that allow minimal sample preparation. Our objectives are to: (1) further evaluate the use of soil HDR in the visible and near-infrared (VIS-NIR) region acquired using an expensive field hyperspectral spectroradiometer for prediction of soil C and selected fractions and nitrogen (N) constituents, (2) repeat the above measurements using HDR data from samples examined in objective (1) using lower SNR hyperspectral radiometers, and (3) add to the limited literature that addresses determinations of selected soil properties using proximal sensing in the VIS-NIR region. Data analyzed in this study confirms that good to satisfactory prediction equations for soil constituents can be developed from spectral reflectance data within the 400–1000 nm wavelength region obtained using relatively inexpensive field radiometers. This application could reduce the time and resources required to monitor gains or losses in carbon constituents, information that can be used in programing such as Conservation Technical Assistance (CTA), the Conservation Reserve Program (CRP) and Climate-smart agriculture (CSA)

    Prediction of Soil Carbon Fractions Using a Field Spectroradiometer Equipped with an Illuminating Contact Probe

    No full text
    This research compared the accuracy of laboratory reference measurements of soil C and N fractions with soil reflectance spectra acquired using a portable field spectroradiometer with an illuminating contact probe. Soil samples were taken from eight, 1.6 ha watersheds, located in El Reno, Oklahoma on native warm season grasslands and agronomic managements with landform complexes serving as replicates within and among treatments. Soil samples were taken from 0–30-cm. Measurements included total soil organic carbon (TSOC), total soil nitrogen (TSN), residual C of acid hydrolysis (RCAH), and particulate organic matter C (POMC) and N (POMN). Soil reflectance in the 350 to 2500 nm region was correlated with individual laboratory measurements. Each reference dataset was divided into model development data (70%) and model validation data (30%). Calibrated models were applied to validation datasets. Statistical analysis revealed that prediction efficiencies of soil reflectance models were highly quantitative. Coefficients of determination (R2) were near 1 (≥0.90) and ratios of predicted values to the measured standard deviation (RPD) were >2, indicative of good predictive models. The field spectroradiometer enabled us to parameterize soil spatial variability and soil reflectance measurements, reducing the resources required to acquire edaphic measurements
    corecore