35 research outputs found

    Resource Recovery from Wastewater Treatment Sludge Containing Gypsum

    Get PDF
    The disposal of wastewater treatment sludge generated at the Radford Army Ammunition Plant (RAAP) is a serious problem. The sludge is produced by neutralizing spent acid contained in the wastewater with lime, and consists principally of very finely divided wet gypsum (calcium sulfate dihydrate). Although the sludge is presently being disposed of in a landfill, the sludge is difficult to handle and convert into a load-bearing material. Therefore an alternative method of disposal is being developed and evaluated. The alternative method involves drying and granulating the sludge, followed by high temperature calcination in a fluidized bed reactor to recover usable sulfur dioxide and lime. If the method is adopted, these products would be used within the plant with considerable cost savings. The sulfur dioxide would be added to the feed stream of an oleum manufacturing facility and the lime would be reused in wastewater treatment

    Kepler-22b: A 2.4 Earth-radius Planet in the Habitable Zone of a Sun-like Star

    Get PDF
    A search of the time-series photometry from NASA's Kepler spacecraft reveals a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626 with a period of 290 days. The characteristics of the host star are well constrained by high-resolution spectroscopy combined with an asteroseismic analysis of the Kepler photometry, leading to an estimated mass and radius of 0.970 +/- 0.060 MSun and 0.979 +/- 0.020 RSun. The depth of 492 +/- 10ppm for the three observed transits yields a radius of 2.38 +/- 0.13 REarth for the planet. The system passes a battery of tests for false positives, including reconnaissance spectroscopy, high-resolution imaging, and centroid motion. A full BLENDER analysis provides further validation of the planet interpretation by showing that contamination of the target by an eclipsing system would rarely mimic the observed shape of the transits. The final validation of the planet is provided by 16 radial velocities obtained with HIRES on Keck 1 over a one year span. Although the velocities do not lead to a reliable orbit and mass determination, they are able to constrain the mass to a 3{\sigma} upper limit of 124 MEarth, safely in the regime of planetary masses, thus earning the designation Kepler-22b. The radiative equilibrium temperature is 262K for a planet in Kepler-22b's orbit. Although there is no evidence that Kepler-22b is a rocky planet, it is the first confirmed planet with a measured radius to orbit in the Habitable Zone of any star other than the Sun.Comment: Accepted to Ap

    Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study

    Get PDF
    A41 Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study In: Addiction Science & Clinical Practice 2017, 12(Suppl 1): A4

    The coherence of EC policies on trade, competition and industry

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:3597.9512(CEPR-DP--1105) / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Resource Recovery from Wastewater Treatment Sludge Containing Gypsum

    Get PDF
    The disposal of wastewater treatment sludge generated at the Radford Army Ammunition Plant (RAAP) is a serious problem. The sludge is produced by neutralizing spent acid contained in the wastewater with lime, and consists principally of very finely divided wet gypsum (calcium sulfate dihydrate). Although the sludge is presently being disposed of in a landfill, the sludge is difficult to handle and convert into a load-bearing material. Therefore an alternative method of disposal is being developed and evaluated. The alternative method involves drying and granulating the sludge, followed by high temperature calcination in a fluidized bed reactor to recover usable sulfur dioxide and lime. If the method is adopted, these products would be used within the plant with considerable cost savings. The sulfur dioxide would be added to the feed stream of an oleum manufacturing facility and the lime would be reused in wastewater treatment.This is a conference proceeding from Proceedings of the 1984 National Waste Processing Conference (1984): 441. Posted with permission.</p

    Investigating Trends in Atmospheric Compositions of Cool Gas Giant Planets Using Spitzer Secondary Eclipses

    Get PDF
    We present new 3.6 and 4.5 μm secondary eclipse measurements for five cool (T 1000 K) transiting gas giant planets: HAT-P-15b, HAT-P-17b, HAT-P-18b, HAT-P-26b, and WASP-69b. We detect eclipses in at least one bandpass for all planets except HAT-P-15b. We confirm and refine the orbital eccentricity of HAT-P-17b, which is also the only planet in our sample with a known outer companion. We compare our measured eclipse depths in these two bands, which are sensitive to the relative abundances of methane versus carbon monoxide and carbon dioxide, respectively, to predictions from 1D atmosphere models for each planet. For planets with hydrogen-dominated atmospheres and equilibrium temperatures cooler than ~1000 K, this ratio should vary as a function of both atmospheric metallicity and the carbon-to-oxygen ratio. For HAT-P-26b, our observations are in good agreement with the low atmospheric metallicity inferred from transmission spectroscopy. We find that all four of the planets with detected eclipses are best matched by models with relatively efficient circulation of energy to the nightside. We see no evidence for a solar-system-like correlation between planet mass and atmospheric metallicity, but instead identify a potential (1.9σ) correlation between the inferred CH4/(CO + CO2) ratio and stellar metallicity. Our ability to characterize this potential trend is limited by the relatively large uncertainties in the stellar metallicity values. Our observations provide a first look at the brightness of these planets at wavelengths accessible to the James Webb Space Telescope, which will be able to resolve individual CH4, CO, and CO2 bands and provide much stronger constraints on their atmospheric compositions
    corecore