102 research outputs found
CNN-Based Health Model for Regular Health Factors Analysis in Internet-of-Medical Things Environment
Remote health monitoring applications with the advent of Internet of Things (IoT) technologies have changed traditional healthcare services. Additionally, in terms of personalized healthcare and disease prevention services, these depend primarily on the strategy used to derive knowledge from the analysis of lifestyle factors and activities. Through the use of intelligent data retrieval and classification models, it is possible to study disease, or even predict any abnormal health conditions. To predict such abnormality, the Convolutional neural network (CNN) model is used, which can detect the knowledge related to disease prediction accurately from unstructured medical health records. However, CNN uses a large amount of memory if it uses a fully connected network structure. Moreover, the increase in the number of layers can lead to an increase in the complexity analysis of the model. Therefore, to overcome these limitations of the CNN-model, we propose a CNN-regular target detection and recognition model based on the Pearson Correlation Coefficient and regular pattern behavior, where the term "regular" denotes objects that generally appear in similar contexts and have structures with low variability. In this framework, we develop a CNN-regular pattern discovery model for data classification. First, the most important health-related factors are selected in the first hidden layer, then in the second layer, a correlation coefficient analysis is conducted to classify the positively and negatively correlated health factors. Moreover, regular patterns' behaviors are discovered through mining the regular pattern occurrence among the classified health factors. The output of the model is subdivided into regular-correlated parameters related to obesity, high blood pressure, and diabetes. Two distinct datasets are adopted to mitigate the effects of the CNN-regular knowledge discovery model. The experimental results show that the proposed model has better accuracy, and low computational load, compared with three different machine learning techniques methods
Internet of Things for Sustainable Community Development: Introduction and Overview
The two-third of the city-dwelling world population by 2050 poses numerous global challenges in the infrastructure and natural resource management domains (e.g., water and food scarcity, increasing global temperatures, and energy issues). The IoT with integrated sensing and communication capabilities has the strong potential for the robust, sustainable, and informed resource management in the urban and rural communities. In this chapter, the vital concepts of sustainable community development are discussed. The IoT and sustainability interactions are explained with emphasis on Sustainable Development Goals (SDGs) and communication technologies. Moreover, IoT opportunities and challenges are discussed in the context of sustainable community development
Surface PEGylation suppresses pulmonary effects of CuO in allergen-induced lung inflammation
BACKGROUND: Copper oxide (CuO) nanomaterials are used in a wide range of industrial and commercial applications. These materials can be hazardous, especially if they are inhaled. As a result, the pulmonary effects of CuO nanomaterials have been studied in healthy subjects but limited knowledge exists today about their effects on lungs with allergic airway inflammation (AAI). The objective of this study was to investigate how pristine CuO modulates allergic lung inflammation and whether surface modifications can influence its reactivity. CuO and its carboxylated (CuO COOH), methylaminated (CuO NH3) and PEGylated (CuO PEG) derivatives were administered here on four consecutive days via oropharyngeal aspiration in a mouse model of AAI. Standard genome-wide gene expression profiling as well as conventional histopathological and immunological methods were used to investigate the modulatory effects of the nanomaterials on both healthy and compromised immune system. RESULTS: Our data demonstrates that although CuO materials did not considerably influence hallmarks of allergic airway inflammation, the materials exacerbated the existing lung inflammation by eliciting dramatic pulmonary neutrophilia. Transcriptomic analysis showed that CuO, CuO COOH and CuO NH3 commonly enriched neutrophil-related biological processes, especially in healthy mice. In sharp contrast, CuO PEG had a significantly lower potential in triggering changes in lungs of healthy and allergic mice revealing that surface PEGylation suppresses the effects triggered by the pristine material. CONCLUSIONS: CuO as well as its functionalized forms worsen allergic airway inflammation by causing neutrophilia in the lungs, however, our results also show that surface PEGylation can be a promising approach for inhibiting the effects of pristine CuO. Our study provides information for health and safety assessment of modified CuO materials, and it can be useful in the development of nanomedical applications
Recommended from our members
Foreground modelling via Gaussian process regression: An application to HERA data
The key challenge in the observation of the redshifted 21-cm signal from
cosmic reionization is its separation from the much brighter foreground
emission. Such separation relies on the different spectral properties of the
two components, although, in real life, the foreground intrinsic spectrum is
often corrupted by the instrumental response, inducing systematic effects that
can further jeopardize the measurement of the 21-cm signal. In this paper, we
use Gaussian Process Regression to model both foreground emission and
instrumental systematics in hours of data from the Hydrogen Epoch of
Reionization Array. We find that a simple co-variance model with three
components matches the data well, giving a residual power spectrum with white
noise properties. These consist of an "intrinsic" and instrumentally corrupted
component with a coherence-scale of 20 MHz and 2.4 MHz respectively (dominating
the line of sight power spectrum over scales h
cMpc) and a baseline dependent periodic signal with a period of
MHz (dominating over h cMpc) which should
be distinguishable from the 21-cm EoR signal whose typical coherence-scales is
MHz
Recommended from our members
Foreground modelling via Gaussian process regression: An application to HERA data
The key challenge in the observation of the redshifted 21-cm signal from
cosmic reionization is its separation from the much brighter foreground
emission. Such separation relies on the different spectral properties of the
two components, although, in real life, the foreground intrinsic spectrum is
often corrupted by the instrumental response, inducing systematic effects that
can further jeopardize the measurement of the 21-cm signal. In this paper, we
use Gaussian Process Regression to model both foreground emission and
instrumental systematics in hours of data from the Hydrogen Epoch of
Reionization Array. We find that a simple co-variance model with three
components matches the data well, giving a residual power spectrum with white
noise properties. These consist of an "intrinsic" and instrumentally corrupted
component with a coherence-scale of 20 MHz and 2.4 MHz respectively (dominating
the line of sight power spectrum over scales h
cMpc) and a baseline dependent periodic signal with a period of
MHz (dominating over h cMpc) which should
be distinguishable from the 21-cm EoR signal whose typical coherence-scales is
MHz
Identifying Biological Network Structure, Predicting Network Behavior, and Classifying Network State With High Dimensional Model Representation (HDMR)
This work presents an adapted Random Sampling - High Dimensional Model Representation (RS-HDMR) algorithm for synergistically addressing three key problems in network biology: (1) identifying the structure of biological networks from multivariate data, (2) predicting network response under previously unsampled conditions, and (3) inferring experimental perturbations based on the observed network state. RS-HDMR is a multivariate regression method that decomposes network interactions into a hierarchy of non-linear component functions. Sensitivity analysis based on these functions provides a clear physical and statistical interpretation of the underlying network structure. The advantages of RS-HDMR include efficient extraction of nonlinear and cooperative network relationships without resorting to discretization, prediction of network behavior without mechanistic modeling, robustness to data noise, and favorable scalability of the sampling requirement with respect to network size. As a proof-of-principle study, RS-HDMR was applied to experimental data measuring the single-cell response of a protein-protein signaling network to various experimental perturbations. A comparison to network structure identified in the literature and through other inference methods, including Bayesian and mutual-information based algorithms, suggests that RS-HDMR can successfully reveal a network structure with a low false positive rate while still capturing non-linear and cooperative interactions. RS-HDMR identified several higher-order network interactions that correspond to known feedback regulations among multiple network species and that were unidentified by other network inference methods. Furthermore, RS-HDMR has a better ability to predict network response under unsampled conditions in this application than the best statistical inference algorithm presented in the recent DREAM3 signaling-prediction competition. RS-HDMR can discern and predict differences in network state that arise from sources ranging from intrinsic cell-cell variability to altered experimental conditions, such as when drug perturbations are introduced. This ability ultimately allows RS-HDMR to accurately classify the experimental conditions of a given sample based on its observed network state
Cognitive Information Processing
Contains goals, background, research activities on one research project and reports on three research projects.Center for Advanced Television StudiesAmerican Broadcasting CompanyAmpex CorporationColumbia Broadcasting SystemsHarris CorporationHome Box OfficePublic Broadcasting ServiceNational Broadcasting CompanyRCA CorporationTektronix3M CompanyProvidence Gravure Co. (Grant)International Business Machines, Inc
Naked1 Antagonizes Wnt Signaling by Preventing Nuclear Accumulation of Ξ²-Catenin
Cyto-nuclear shuttling of Ξ²-catenin is at the epicenter of the canonical Wnt pathway and mutations in genes that result in excessive nuclear accumulation of Ξ²-catenin are the driving force behind the initiation of many cancers. Recently, Naked Cuticle homolog 1 (Nkd1) has been identified as a Wnt-induced intracellular negative regulator of canonical Wnt signaling. The current model suggests that Nkd1 acts between Disheveled (Dvl) and Ξ²-catenin. Here, we employ the zebrafish embryo to characterize the cellular and biochemical role of Nkd1 in vivo. We demonstrate that Nkd1 binds to Ξ²-catenin and prevents its nuclear accumulation. We also show that this interaction is conserved in mammalian cultured cells. Further, we demonstrate that Nkd1 function is dependent on its interaction with the cell membrane. Given the conserved nature of Nkd1, our results shed light on the negative feedback regulation of Wnt signaling through the Nkd1-mediated negative control of nuclear accumulation of Ξ²-catenin
- β¦