5,997 research outputs found

    Evolution of quantum observables: from non-commutativity to commutativity

    Get PDF
    A fundamental aspect of the quantum-to-classical limit is the transition from a non- commutative algebra of observables to commutative one.However, this transition is not possible if we only consider unitary evolutions. One way to describe this transition is to consider the Gamow vectors, which introduce exponential decays in the evolution. In this paper, we give two mathematical models in which this transition happens in the infinite time limit. In the first one, we consider operators acting on the space of the Gamow vectors, which represent quantum resonances. In the second one, we use an algebraic formalism from scattering theory. We construct a non-commuting algebra which commutes in the infinite time limit.MINECO Grant MTM2014- 57129-C2-1-P. Junta de Castilla y Leon Grants BU229P18, VA137G18

    Second-order critical lines of spin-S Ising models in a splitting field with Grassmann techniques

    Full text link
    We propose a method to study the second-order critical lines of classical spin-SS Ising models on two-dimensional lattices in a crystal or splitting field, using an exact expression for the bare mass of the underlying field theory. Introducing a set of anticommuting variables to represent the partition function, we derive an exact and compact expression for the bare mass of the model including all local multi-fermions interactions. By extension of the Ising and Blume-Capel models, we extract the free energy singularities in the low momentum limit corresponding to a vanishing bare mass. The loci of these singularities define the critical lines depending on the spin S, in good agreement with previous numerical estimations. This scheme appears to be general enough to be applied in a variety of classical Hamiltonians

    Properties of Non-Abelian Fractional Quantum Hall States at Filling ν=kr\nu=\frac{k}{r}

    Full text link
    We compute the physical properties of non-Abelian Fractional Quantum Hall (FQH) states described by Jack polynomials at general filling ν=kr\nu=\frac{k}{r}. For r=2r=2, these states are identical to the ZkZ_k Read-Rezayi parafermions, whereas for r>2r>2 they represent new FQH states. The r=k+1r=k+1 states, multiplied by a Vandermonde determinant, are a non-Abelian alternative construction of states at fermionic filling 2/5,3/7,4/9...2/5, 3/7, 4/9.... We obtain the thermal Hall coefficient, the quantum dimensions, the electron scaling exponent, and show that the non-Abelian quasihole has a well-defined propagator falling off with the distance. The clustering properties of the Jack polynomials, provide a strong indication that the states with r>2r>2 can be obtained as correlators of fields of \emph{non-unitary} conformal field theories, but the CFT-FQH connection fails when invoked to compute physical properties such as thermal Hall coefficient or, more importantly, the quasihole propagator. The quasihole wavefuntion, when written as a coherent state representation of Jack polynomials, has an identical structure for \emph{all} non-Abelian states at filling ν=kr\nu=\frac{k}{r}.Comment: 2 figure

    Neutron star radii and crusts: uncertainties and unified equations of state

    Get PDF
    The uncertainties in neutron star (NS) radii and crust properties due to our limited knowledge of the equation of state (EOS) are quantitatively analysed. We first demonstrate the importance of a unified microscopic description for the different baryonic densities of the star. If the pressure functional is obtained matching a crust and a core EOS based on models with different properties at nuclear matter saturation, the uncertainties can be as large as 30%\sim 30\% for the crust thickness and 4%4\% for the radius. Necessary conditions for causal and thermodynamically consistent matchings between the core and the crust are formulated and their consequences examined. A large set of unified EOS for purely nucleonic matter is obtained based on 24 Skyrme interactions and 9 relativistic mean-field nuclear parametrizations. In addition, for relativistic models 17 EOS including a transition to hyperonic matter at high density are presented. All these EOS have in common the property of describing a 2  M2\;M_\odot star and of being causal within stable NS. A span of 3\sim 3 km and 4\sim 4 km is obtained for the radius of, respectively, 1.0  M1.0\;M_\odot and 2.0  M2.0\;M_\odot star. Applying a set of nine further constraints from experiment and ab-initio calculations the uncertainty is reduced to 1\sim 1 km and 22 km, respectively. These residual uncertainties reflect lack of constraints at large densities and insufficient information on the density dependence of the EOS near the nuclear matter saturation point. The most important parameter to be constrained is shown to be the symmetry energy slope LL which exhibits a linear correlation with the stellar radius, particularly for masses 1.0  M\sim 1.0\;M_\odot. Potential constraints on LL, the NS radius and the EOS from observations of thermal states of NS are also discussed. [Abriged]Comment: Submitted to Phys. Rev. C. Supplemental material not include

    The H.E.S.S. extragalactic sky

    Full text link
    The H.E.S.S. Cherenkov telescope array, located on the southern hemisphere in Namibia, studies very high energy (VHE; E>100 GeV) gamma-ray emission from astrophysical objects. During its successful operations since 2002 more than 80 galactic and extra-galactic gamma-ray sources have been discovered. H.E.S.S. devotes over 400 hours of observation time per year to the observation of extra-galactic sources resulting in the discovery of several new sources, mostly AGNs, and in exciting physics results e.g. the discovery of very rapid variability during extreme flux outbursts of PKS 2155-304, stringent limits on the density of the extragalactic background light (EBL) in the near-infrared derived from the energy spectra of distant sources, or the discovery of short-term variability in the VHE emission from the radio galaxy M 87. With the recent launch of the Fermi satellite in 2008 new insights into the physics of AGNs at GeV energies emerged, leading to the discovery of several new extragalactic VHE sources. Multi-wavelength observations prove to be a powerful tool to investigate the production mechanism for VHE emission in AGNs. Here, new results from H.E.S.S. observations of extragalactic sources will be presented and their implications for the physics of these sources will be discussed.Comment: 8 pages, 6 figures, invited review talk, in the proceedings of the "International Workshop on Beamed and Unbeamed Gamma-Rays from Galaxies" 11-15 April 2011, Lapland Hotel Olos, Muonio, Finland, Journal of Physics: Conference Series Volume 355, 201

    SM(2,4k) fermionic characters and restricted jagged partitions

    Full text link
    A derivation of the basis of states for the SM(2,4k)SM(2,4k) superconformal minimal models is presented. It relies on a general hypothesis concerning the role of the null field of dimension 2k1/22k-1/2. The basis is expressed solely in terms of GrG_r modes and it takes the form of simple exclusion conditions (being thus a quasi-particle-type basis). Its elements are in correspondence with (2k1)(2k-1)-restricted jagged partitions. The generating functions of the latter provide novel fermionic forms for the characters of the irreducible representations in both Ramond and Neveu-Schwarz sectors.Comment: 12 page

    Broadband multi-wavelength campaign on PKS 2005-489

    Full text link
    The spectral energy distribution (SED) of high-frequency peaked BL Lac objects (HBL) is characterized by two peaks: one in the UV-X-ray and one in the GeV-TeV regime. An interesting object for analyzing these broadband characteristics is PKS 2005-489, which in 2004 showed the softest TeV spectrum ever measured. In 2009, a multi-wavelength campaign has been conducted with, for the first time, simultaneous observations by H.E.S.S. (TeV), Fermi/LAT (GeV), RXTE (keV), Swift (keV, UV, optical) and ATOM (optical) to cover the two peaks of the SED. During this campaign PKS 2005-489 underwent a high state in all wavebands which gives the opportunity to study in detail the emission processes of a high state of this interesting HBL.Comment: 2009 Fermi Symposium; eConf Proceedings C09112

    Thermalisation time and specific heat of neutron stars crust

    Full text link
    We discuss the thermalisation process of the neutron stars crust described by solving the heat transport equation with a microscopic input for the specific heat of baryonic matter. The heat equation is solved with initial conditions specific to a rapid cooling of the core. To calculate the specific heat of inner crust baryonic matter, i.e., nuclear clusters and unbound neutrons, we use the quasiparticle spectrum provided by the Hartree-Fock-Bogoliubov approach at finite temperature. In this framework we analyse the dependence of the crust thermalisation on pairing properties and on cluster structure of inner crust matter. It is shown that the pairing correlations reduce the crust thermalisation time by a very large fraction. The calculations show also that the nuclear clusters have a non-negligible influence on the time evolution of the surface temperature of the neutron star.Comment: 7 pages, 5 figures, submitted to Phys. Rev.
    corecore