9,547 research outputs found

    VSAERO analysis of tip planforms for the free-tip rotor

    Get PDF
    The results of a numerical analysis of two interacting lifting surfaces separated in the spanwise direction by a narrow gap are presented. The configuration consists of a semispan wing with the last 32 percent of the span structurally separated from the inboard section. The angle of attack of the outboard section is set independently from that of the inboard section. In the present study, the three-dimensional panel code VSAERO is used to perform the analysis. Computed values of tip surface lift and pitching moment coefficients are correlated with experimental data to determine the proper approach to model the gap region between the surfaces. Pitching moment data for various tip planforms are also presented to show how the variation of tip pitching moment with angle of attack may be increased easily in incompressible flow. Calculated three-dimensional characteristics in compressible flow at Mach numbers of 0.5 and 0.7 are presented for new tip planform designs. An analysis of sectional aerodynamic center shift as a function of Mach number is also included for a representative tip planform. It is also shown that the induced drag of the tip surface is reduced for negative incidence angles relative to the inboard section. The results indicate that this local drag reduction overcomes the associated increase in wing induced drag at high wing lift coefficients

    Flexible and practical modeling of animal telemetry data: hidden Markov models and extensions

    Get PDF
    We discuss hidden Markov-type models for fitting a variety of multistate random walks to wildlife movement data. Discrete-time hidden Markov models (HMMs) achieve considerable computational gains by focusing on observations that are regularly spaced in time, and for which the measurement error is negligible. These conditions are often met, in particular for data related to terrestrial animals, so that a likelihood-based HMM approach is feasible. We describe a number of extensions of HMMs for animal movement modeling, including more flexible state transition models and individual random effects (fitted in a non-Bayesian framework). In particular we consider so-called hidden semi-Markov models, which may substantially improve the goodness of fit and provide important insights into the behavioral state switching dynamics. To showcase the expediency of these methods, we consider an application of a hierarchical hidden semi-Markov model to multiple bison movement paths

    The cerebrovascular effects of adrenaline, noradrenaline and dopamine infusions under propofol and isoflurane anaesthesia in sheep

    Get PDF
    Publisher's copy made available with the permission of the publisher © Australian Society of AnaesthetistsInfusions of catecholamines are frequently administered to patients receiving propofol or isoflurane anaesthesia. Interactions between these drugs may affect regional circulations, such as the brain. The aim of this animal (sheep) study was to determine the effects of ramped infusions of adrenaline, noradrenaline (10, 20, 40 µg/min) and dopamine (10, 20, 40 µg/kg/min) on cerebral blood flow (CBF), intracranial pressure (ICP), cerebrovascular resistance (CVR) and cerebral metabolic rate for oxygen (CMRO₂). These measurements were made under awake physiological conditions, and during continuous propofol (15 mg/min) or 2% isoflurane anaesthesia. All three catecholamines significantly and equivalently increased mean arterial pressure from baseline in a dose-dependent manner in the three cohorts (P0.05). Under propofol (n=6) and isoflurane (n=6), all three catecholamines significantly increased CBF (P<0.001). Dopamine caused the greatest increase in CBF, and was associated with significant increases in ICP (awake: P<0.001; propofol P<0.05; isoflurane P<0.001) and CVR (isoflurane P<0.05). No significant changes in CMRO₂ were demonstrated. Under propofol and isoflurane anaesthesia, the cerebrovascular effects of catecholamines were significantly different from the awake, physiological state, with dopamine demonstrating the most pronounced effects, particularly under propofol. Dopamine-induced hyperaemia was associated with other cerebrovascular changes. In the presence of an equivalent effect on mean arterial pressure, the exaggerated cerebrovascular effects under anaesthesia appear to be centrally mediated, possibly induced by propofol- or isoflurane-dependent changes in blood-brain barrier permeability, thereby causing a direct influence on the cerebral vasculature.http://www.aaic.net.au/Article.asp?D=200205

    Limit Cycles in Four Dimensions

    Full text link
    We present an example of a limit cycle, i.e., a recurrent flow-line of the beta-function vector field, in a unitary four-dimensional gauge theory. We thus prove that beta functions of four-dimensional gauge theories do not produce gradient flows. The limit cycle is established in perturbation theory with a three-loop calculation which we describe in detail.Comment: 12 pages, 1 figure. Significant revision of the interpretation of our result. Improved description of three-loop calculatio

    Energy benefits and emergent space use patterns of an empirically parameterized model of memory-based patch selection

    Get PDF
    Many species frequently return to previously visited foraging sites. This bias towards familiar areas suggests that remembering information from past experience is beneficial. Such a memory-based foraging strategy has also been hypothesized to give rise to restricted space use (i.e. a home range). Nonetheless, the benefits of empirically derived memory-based foraging tactics and the extent to which they give rise to restricted space use patterns are still relatively unknown. Using a combination of stochastic agent-based simulations and deterministic integro-difference equations, we developed an adaptive link (based on energy gains as a foraging currency) between memory-based patch selection and its resulting spatial distribution. We used a memory-based foraging model developed and parameterized with patch selection data of free-ranging bison Bison bison in Prince Albert National Park, Canada. Relative to random use of food patches, simulated foragers using both spatial and attribute memory are more efficient, particularly in landscapes with clumped resources. However, a certain amount of random patch use is necessary to avoid frequent returns to relatively poor-quality patches, or avoid being caught in a relatively poor quality area of the landscape. Notably, in landscapes with clumped resources, simulated foragers that kept a reference point of the quality of recently visited patches, and returned to previously visited patches when local patch quality was poorer than the reference point, experienced higher energy gains compared to random patch use. Furthermore, the model of memory-based foraging resulted in restricted space use in simulated landscapes and replicated the restricted space use observed in free-ranging bison reasonably well. Our work demonstrates the adaptive value of spatial and attribute memory in heterogeneous landscapes, and how home ranges can be a byproduct of non-omniscient foragers using past experience to minimize temporal variation in energy gains

    SM(2,4k) fermionic characters and restricted jagged partitions

    Full text link
    A derivation of the basis of states for the SM(2,4k)SM(2,4k) superconformal minimal models is presented. It relies on a general hypothesis concerning the role of the null field of dimension 2k1/22k-1/2. The basis is expressed solely in terms of GrG_r modes and it takes the form of simple exclusion conditions (being thus a quasi-particle-type basis). Its elements are in correspondence with (2k1)(2k-1)-restricted jagged partitions. The generating functions of the latter provide novel fermionic forms for the characters of the irreducible representations in both Ramond and Neveu-Schwarz sectors.Comment: 12 page
    corecore