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(Abstract) 

Many species frequently return to previously visited foraging sites. This bias towards 

familiar areas suggests that remembering information from past experience is beneficial. 

Such a memory-based foraging strategy has also been hypothesized to give rise to 

restricted space use (i.e. a home range). Nonetheless, the benefits of empirically derived 

memory-based foraging tactics and the extent to which they give rise to restricted space 

use patterns are still relatively unknown. Using a combination of stochastic agent-based 

simulations and deterministic integro-difference equations, we developed an adaptive 

link (based on energy gains as a foraging currency) between memory-based patch 

selection and its resulting spatial distribution. We used a memory-based foraging model 

developed and parameterized with patch selection data of free-ranging bison Bison 

bison in Prince Albert National Park, Canada. Relative to random use of food patches, 

simulated foragers using both spatial and attribute memory are more efficient, 

particularly in landscapes with clumped resources. However, a certain amount of 

random patch use is necessary to avoid frequent returns to relatively poor-quality 

patches, or avoid being caught in a relatively poor quality area of the landscape. 

Notably, in landscapes with clumped resources, simulated foragers that kept a reference 

point of the quality of recently visited patches, and returned to previously visited 

patches when local patch quality was poorer than the reference point, experienced 

higher energy gains compared to random patch use. Furthermore, the model of memory-

based foraging resulted in restricted space use in simulated landscapes and replicated 

the restricted space use observed in free-ranging bison reasonably well. Our work 

demonstrates the adaptive value of spatial and attribute memory in heterogeneous 

landscapes, and how home ranges can be a byproduct of non-omniscient foragers using 

past experience to minimize temporal variation in energy gains.   
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Introduction 

During patch selection, animals that are omniscient and know the location and 

profitability (i.e., digestible energy / handling time) of all foraging options would be 

expected to only forage in the best patch until the rate of energy gain decreases below 

the average energy gain of all foraging options (Charnov 1976). If those best patches are 

randomly distributed in the landscape, omniscient foragers should gradually drift away 

from their starting point because there is no systematic mechanism to bring them back 

to a particular location. The same outcome would result from foragers that are 

completely naïve to heterogeneity in energy gain and travel completely at random 

among food patches (Codling et al. 2008). In reality, animals are not omniscient and 

must gain information about their environment to deal with spatio-temporal 

heterogeneity in resource availability (Dall et al. 2005). The information gained while 

foraging still leaves animals with incomplete knowledge, which can result in strong 

differences in the food choices and spatial dynamics between non-omniscient and 

omniscient foragers. In addition, many species frequently return to previously visited 

patches (i.e., site fidelity; Piper 2011), resulting in space use patterns such as home 

ranges (Van Moorter et al. 2009). Home range behavior is among the most basic 

patterns observed in animals (Börger et al. 2008), and it influences many ecological 

processes including population regulation and biological transport of resources (Fagan 

et al. 2007, Wang and Grimm 2007). The disconnect between observed animal 

distributions and predictions of foraging models that assume omniscience or naivety, 

underscores the need to improve the understanding of how animals use their past 

experience during patch selection. 

We contribute to this gap in knowledge by quantifying the energy benefits and 

emergent space use properties of the memory-based patch selection model developed 

and parameterized by Merkle et al. (2014) for free-ranging bison (Bison bison) in Prince A
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Albert National Park, Canada. The model has three main components, where animals 

employing it use spatial and attribute memory to choose food patches based on 1) 

whether or not they have previously visited them, 2) their reference point of patch 

profitability derived from recent foraging experience, and 3) their memory of the 

profitability of each previously visited patch (Merkle et al. 2014). The motivation for 

developing the model was based on the fact that theoretical developments of animal 

memory as a mechanism resulting in home range formation have assumed that foragers 

significantly deplete resources within patches during a visit (Nabe-Nielsen et al. 2013, 

Riotte-Lambert et al. 2015, Spencer 2012, Van Moorter et al. 2009). This assumption 

logically leads to the hypothesis that animals have a working memory, used to avoid 

recently depleted patches, and a reference memory, used to store preferences for certain 

feeding areas (Van Moorter et al. 2009). Many animals, however, are routinely on the 

move (Boinski and Garber 2000) and do not forage in a patch long enough to 

experience a decrease in intake rate (e.g., Fortin et al. 2009, Illius et al. 2002). In these 

cases, animals leave patches sooner than expected by energy maximization principles to 

sample and gather information about adjacent patches (Lima 1985) or to avoid predators 

(Mitchell and Lima 2002). Natural selection should thus favor individuals that have 

developed spatial memory so they can efficiently return to previously visited patches 

where they know food is still available (component 1 of the model). Component 1 is 

based on the hypothesis that animals develop a cognitive map of locations they have 

visited and bias their movements towards them (Benhamou 1997, Spencer 2012). This 

tactic differs from memory enhancement models, where selection for a site increases 

with the number of repeated uses of that site (Tan et al. 2001), and models where 

previously visited sites are chosen at random from all visited sites (Gautestad and 

Mysterud 2005). Component 1 does though incorporate memory decay for remembering 
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previously visited sites (McNamara and Houston 1985, Merkle et al. 2014, Tan et al. 

2002). 

To further utilize past experience to their benefit, animals could also develop a 

system of attribute memory – the encoding of resource attributes without a spatial 

association (Fagan et al. 2013). Individuals in this case could keep a running mean of 

the quality of recently visited patches, which would provide a reference point to 

evaluate local resource quality (Fortin 2002, Fortin 2003), and a guide for when to 

return to previously visited sites within the individual’s cognitive map (component 2 of 

the model; Merkle et al. 2014). This foraging tactic is similar to Bayesian foraging 

where, at each time step, an animal can update its expected distribution of available site 

qualities by combining past and current information (Cheng et al. 2007). Individuals 

could also combine spatial and attribute memory so that they have a cognitive map of 

the distribution of patch quality (Avgar et al. 2013, Fagan et al. 2013, Nabe-Nielsen et 

al. 2013). Animals could then bias their movements towards patches that they know, 

from past experience, are of higher quality than their current reference point and avoid 

ones that are of lower quality (component 3 of the model; Bailey et al. 1996). Overall, 

in comparison to a forager selecting patches at random, combining spatial and attribute 

memory should provide animals with the information to maximize energy gains while 

resulting in restricted space use patterns (Boyer and Walsh 2010, Dalziel et al. 2008, 

Van Moorter et al. 2009).  

Despite recent developments in memory-based foraging models (Fagan et al. 

2013, Riotte-Lambert et al. 2015), including numerous hypotheses for how animals 

integrate past experience into their behavioral decisions (e.g., Avgar et al. 2013, Folse et 

al. 1989, Gautestad and Mysterud 2005, Van Moorter et al. 2009), there is a lack of 

demonstrations of: a) the benefits of empirically derived memory-based foraging 

models; b) the extent to which memory-based foraging models give rise to restricted A
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space use patterns, and c) whether or not predicted space use patterns derived from fine-

scale memory-based foraging models fit empirical space use patterns of wild animals 

(but see Boyer and Walsh 2010). As Merkle et al. (2014) did not examine emergent 

predictions of their memory-based patch selection model, we first employed an agent-

based simulation approach to investigate the energy benefits of the model by monitoring 

the cumulative expected energy intake rate per distance traveled that simulated agents 

experience while foraging. Second, we employed an integro-difference equation 

approach (Potts et al. 2014) to examine the extent to which our memory-based 

movement model gives rise to restricted space use. Finally, to verify that predictions of 

the model have successfully captured key aspects of the empirical space use dynamics 

of bison, we again employed the integro-difference equation to test whether model 

predictions match movement trajectories of bison in their natural habitat over the course 

of a year. Because energy gains should be strongly linked to fitness, a fundamental 

premise of optimal foraging theory (Stephens and Krebs 1986), our analysis informs 

why memory-based foraging behavior might have evolved, and how such behavior can 

translate into restricted space use distributions.  

Methods 

Simulation approaches 

We used an agent-based simulation and an integro-difference equation approach, 

respectively, to examine the energy benefits and restricted space use properties of 

memory-based movement. Both approaches rely on the same movement kernel (Fig. 1), 

but use it differently. A movement kernel is a probability distribution specifying the 

probability of moving to location x (a potential target patch) given being previously at 

location y (a given source patch; Fig. 1). At every iteration of an agent-based 

simulation, a target patch is selected by an agent based on a probability proportional to 

the movement kernel, and the agent then moves to that patch. The agent-based A
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simulation approach results in a movement trajectory of a single animal over time. By 

contrast, for the integro-difference equation approach, the movement kernel is converted 

into a master equation (ME; Van Kampen 1992), enabling quantitative investigation of 

how space use patterns emerge from the underlying movement process (Potts et al. 

2014). Instead of simulating individuals, as in the agent-based approach, the ME gives 

the probability density of a population at some time t + ǻt as a function of both the 

probability density at time t, and the movement kernel. Denoting the probability that the 

population is in patch x at time t by u(x,t), the ME is ݑሺ ǡ ݐ ൅ οݐሻ ൌ  ෍݂ሺ ȁ ǡ ɂǡ ઻ǡ ઺ሻݑሺ ǡ ሻ௬ఢஐݐ  ሺͳሻ 
where ݂ ሺ ȁ ǡ ɂǡ ઻ǡ ઺ሻ is the movement kernel, and ȍ is the set of all patches in the 

landscape. Note that the general form of an integro-difference equation has an integral 

expression on the right-hand side, whereas in eq. 1 there is a sum. The reason for this, in 

our case, is that the spatial domain is a discrete set of patches, and an integral over a 

discrete domain is defined to be a sum over that domain. The main advantage of using a 

ME (i.e., integro-difference equation) over stochastic, agent-based simulations comes 

when calculating the utilization distribution over time, u(x,t). The ME allows for such a 

calculation in a single, deterministic numerical simulation, whereas it would take a very 

large number of agent-based stochastic simulations to obtain an accurate estimate of 

u(x,t) (see Potts et al. [2014] for more details on its use with SSFs). 

For both approaches, the movement kernel is calculated as ݂ሺ ȁ ǡ ɂǡ ઻ǡ ઺ሻ ൌ ଵȰሺ ȁ ǡିܭ ઻ሻܹሺ ǡ  ǡ ɂǡ ઺ሻǤ  ሺʹሻ 
where ĭ(x|y, Ȗ) is a step length distribution, W(x,y,İ,ȕ) is a Step Selection Function 

(SSF; Fortin et al. 2005) denoting the effect of the environment on the animal’s 

movement, and K is a normalizing constant ensuring f(x|y,İ,Ȗ,ȕ) integrates to 1 with 

respect to x (Fig. 1). Eq. 2’s formulation assumes a uniform turning angle distribution. 

The symbol İ denotes the information that the animal has about its environment, Ȗ is a A
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vector of parameters for the step length distribution, and ȕ is a vector of coefficients 

denoting the strength that each of the pertinent environmental covariates has on the 

animal movement.  

In the present study, ĭ(x|y, Ȗ) is a Weibull distribution  

Ȱሺ ȁ ǡ ઻ሻ ൌ  ఑ఒ ቀௗ௜௦௧ఒ ቁ఑ିଵ ݁ିቀ೏೔ೞ೟ഊ ቁഉ,  (3) 

where Ȗ = (ț,Ȝ), ț is the shape parameter, Ȝ is the scale parameter, and dist is the 

distance between x and y. The SSF is  

W(x,y,İ,ȕ) = exp(ȕ·Z),   (4) 

where Z = Z(x,y,İ) and ȕ·Z is the scalar product of ȕ and Z. Each of the entries in the 

vector Z can be derived from knowledge of x, y and İ, but we drop the explicit 

dependence of Z on these parameters for notational convenience. Details of ȕ and Z are 

explained below.  

The memory-based patch selection model 

The memory-based foraging model developed by Merkle et al. (2014) is a 

statistical model taking the form of a SSF (Fortin et al. 2005) of patch-to-patch 

movements, where at each discrete time step, an animal chooses among available target 

patches based on a set of environmental parameters. The model is comprised of three 

main components (i.e., parameters). First, animals choose patches they have previously 

visited more often than random (PrevVis). PrevVis is an indicator of whether or not an 

individual has previously visited a given patch. Second, animals are more likely to 

choose previously visited patches if the profitability of their current patch (i.e., an 

indicator of local patch quality) is lower than their recent past experience (PrevVis × 

RelRefPoint). RelRefPoint is calculated as the reference point (i.e., mean profitability of 

previously visited patches multiplied by a memory decay function of time) minus the 

profitability of the currently occupied patch. Third, individuals choose patches with a 

relatively high profitability given what they know about their options (ExpProfit). A
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ExpProfit or expected profitability is calculated for a given patch based on whether or 

not the animal has previously visited it. If the patch has not been previously visited, the 

patch’s ExpProfit is the animal’s reference point. If the patch has been previously 

visited, the patch’s ExpProft is the actual profitability of the patch multiplied by a 

memory decay function which tends towards the animal’s reference point over time 

(Bailey et al. 1996). The memory decay function in all components is calculated as 

1/(1+k×t), where k is the devaluation or memory decay factor and t is time in hours 

since the event happened. See Merkle et al. (2014) for further details on how the 

variables were calculated. Altogether, the vector of parameters of the memory-based 

foraging tactic is Z = (Dist, Area, PrevVis, PrevVis × RelRefPoint, ExpProfit). Here, 

Dist is the distance between x and y, and Area is the area of a potential target patch. The 

other entries of Z – PrevVis, RelRefPoint, and ExpProfit – are related to memory and 

explained above. The vector ȕ = (ȕDist, ȕArea, ȕPrevVis, ȕPrevvis×RelRefPoint, ȕExpProfit) is a 

vector of coefficients representing the strength of influence given by each variable in Z. 

Energy benefits of memory-based patch selection 

Simulated landscapes – Because the energy benefits of memory are expected to be 

highest among landscapes with intermediate spatial complexity (Fagan et al. 2013), we 

simulated four different landscapes with the same randomly located patches, but with 

varying degrees of the observed spatial autocorrelation in patch profitability found in 

Prince Albert National Park. We simulated one landscape with no spatial 

autocorrelation, one with the observed autocorrelation, and two landscapes with 

relatively high (i.e., five and ten times more than observed) autocorrelation (see 

Appendix A for details). These simulations provided landscapes with a resource 

gradient from approximately random to highly clumped (Fig. 2). 

Parameter values and starting locations – To examine the energy benefits of memory-

based foraging, we monitored the energy gains that simulated agents experienced across A
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20 different scenarios. The scenarios included all combinations of the four simulated 

landscapes, and five different sets of parameters values (i.e., strength of movement bias 

with respect to each memory component) governing the influence that memory-based 

foraging behavior has over random movement. Using the observed parameter values 

(i.e., ȕ = [-0.661, 0, 0.822, 0.896, 2.282]) for bison during winter as a baseline (Merkle 

et al. 2014), we increased the relative odds (exponent of the ȕs) of choosing patches 

with parameters ȕPrevVis, ȕPrevvis×RelRefPoint, and ȕExpProfit by factors of  3, 6, 9, and 12 times. 

For example, to increase the relative odds by a factor of 3, we calculated each new ߚ௜ as 

ln(exp(ȕi)×3), where i = PrevVis, Prevvis×RelRefPoint, or ExpProfit.  

We only used parameter values from winter because i) winter was the season 

when all components were supported by empirical movement, and ii) we did not want to 

add temporal variation in patch selection because of its potential to muddle our 

inference on energy benefits and space use over time. Our specified variation in 

parameter values allowed us to assess the relationship between random movement and 

the strength of memory-based movement bias with respect to energy gains (Boyer and 

Walsh 2010). We did not assess the effect of patch area (i.e., ȕ for LogArea was always 

specified as 0), as we were interested in the rate of energy gain within patches only.  

To examine the energy benefits of spatial and attribute memory separately, we 

examined three models (two additional models) representing the effect of each of the 

three components of the memory-based foraging model: agents equipped with the 

ability to remember (1) patch location only (“Loc”: PrevVis), (2) patch location and a 

running mean of previous experience (“Loc + RP”: PrevVis and PrevVis × 

RelRefPoint), and (3) patch location and quality along with a running mean of past 

experience (i.e., the full memory-based foraging model; “Loc + RP + Qual”: PrevVis 

and PrevVis × RelRefPoint and ExpProfit). For each scenario, we specified parameter 

values of ȕ = [-0.661, 0, 2.61, 2.68, 4.07] for Z = [Dist, Area, PrevVis, ExpProfit × A
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RelRefPoint, ExpProfit] (i.e., six times the size of the exponent of the observed 

parameter values). These parameter values were found to produce the highest 

cumulative expected energy intake rate per distance traveled over time (see Results). 

The two additional models were simulated over all four landscapes (adding eight 

additional scenarios, totaling 28).  

For all simulations, we specified the Weibull shape and scale parameters as ț = 

1.12 and Ȝ = 1.41, respectively (see Appendix B for details), representing estimates of 

the observed annual distribution of step lengths of patch-to-patch movements (n = 

19,903) for bison (Merkle et al. 2014). For all simulations, we used devaluation factors 

(i.e., parameter of the weighting function of past experience) for memory-based 

variables reported in Merkle et al. (2014). Briefly, the devaluation factors for 

remembering the location of sites were near 0, meaning that once a patch is visited, its 

location is not forgotten. Devaluation factors for remembering patch profitability were 

higher, suggesting that there is memory decay, and patch information becomes forgotten 

or valueless over time (see Merkle et al. 2014 for details).  

To emulate the movement of bison within their natural habitat, we assumed that 

the agents within our simulation represent a single group. Given our knowledge of 

population size (mean 420; Merkle et al. 2015) and winter group size (mean = 16; 

Fortin et al. 2009) within the year that patch depletion was estimated (i.e., 2007), we 

simultaneously monitored 26 agents (420/16 ≈ 26) in each simulation, with each agent 

representing a group. Starting locations of the 26 agents in each simulation were chosen 

by randomly placing each agent in a patch that was < 2 km from the center of the 

landscape and had an expected intake rate that was greater than the landscape mean. We 

chose to start individuals in patches that had a greater than average profitability to 

reflect that, i) during a reintroduction effort, individuals would likely be released in 

patches that were better than average, and ii) when bison are young, they learn about A
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their landscape by following their mother, which is assumed to use patches with a 

profitability that is equal to or higher than average because she has successfully raised a 

calf. Finally, we verified that random variation in the specified patch profitability in the 

simulated landscapes would not influence comparisons across the landscapes. The mean 

profitability of all patches < 2 km from the center of each simulated landscape was < 2.2 

units (< 10% of 1 SD) away from the observed mean of 699.8 kJ/min.  

We started simulations on the first day of the growing season (which lasts 156 

steps from May through August), and monitored agents for a total of 28 months (1,092 

steps), with the time-step length ǻt = 18.8 h (representing the mean of the observed 

distribution of residency times plus inter-patch travel time for bison). As in Van 

Moorter et al. (2009), we specified the first 156 steps as an initial transition or learning 

phase, and removed it from further analyses. For each of the 28 different scenarios for 

simulation, we ran 100 replicates (i.e., 100 different populations), providing 2,600 

individual trajectories used for further analyses. Although resource depletion by bison is 

minimal in our study system (Merkle et al. 2015), we still incorporated a decrease in 

patch profitability after an agent moves through a patch during our simulations. Further, 

during the growing season, we also incorporated regrowth in vegetation during the 

growing season (see Appendix C for details). 

Analysis of energy intake rate – To estimate the energy benefits of the memory-based 

foraging model, we calculated the sum of the gross energy gains consumed (in kJ of 

digestible energy obtained per min) while taking into account travel time based on 

distance (in km) from the previous patch at each time step (sensu Mitchell and Powell 

2004). Bison travel between feeding stations within a patch at a mean speed of 

approximately 23.9 m/min (Fortin et al. 2002); thus, it takes bison approximately 41.9 

min to travel one km. Bison spend a mean of 642 min/day foraging (Hudson and Frank 

1987), which we translated to spending 502 minutes foraging at each time step ǻt. Thus, A
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our index (E) of the cumulative expected energy intake rate per distance traveled (Dist) 

was calculated as  

ܧ ൌ  ෍݌ሺ ǡ ሻݐ  ൈ  ͷͲʹݐݏ݅ܦ ൈ  ͶͳǤͻ  ሺ͹ሻଽଷ଺
௧ୀଵ  

where p(x, t) is the profitability of patch x at time t. To be conservative in assessing 

differences in the cumulative resources consumed among the different scenarios, we 

calculated population level 95% CIs (i.e., ͳǤͻ͸ ൈ ඥߪଶȀͳͲͲ). We considered the energy 

benefits between two scenarios to be different if the 95% CI did not overlap. 

Finally, to establish a point for comparison, we also simulated a random and 

informed forager in each of the four landscapes. The random forager chose patches 

based on a probability proportional to the step length distribution ĭ(x|y,Ȗ). The 

informed forager knew the location and profitability of all patches in the landscape and 

chose patches based on a probability proportional to the ratio of expected profitability of 

each patch divided by distance, multiplied by the step length distribution ĭ(x|y,Ȗ). For 

these two foragers, we also monitored E, as explained in the previous paragraph.  

Emergent space use properties of memory-based patch selection 

Because the integro-difference equation approach (i.e., the ME) deals with 

probabilities, and not individual locations, some modifications needed to be made in the 

calculation of patch depletion and regrowth, as well as the incorporation of memory into 

the movement kernel (details of the modifications can be found in Appendix D).  

Parameters and starting locations of the ME – All parameters for the 28 scenarios for 

the ME were the same as the agent-based simulation. However, because the ME 

determines space use at the population level, we modified how starting locations were 

specified. For each of the four landscapes, we started the ME as if the populations were 

equally distributed among all the patches that were both < 2km from the center and had 

greater than the mean profitability of the landscape. With this specification, we were A
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able to eliminate any potential bias associated with starting locations. As with the agent-

based simulation, we specified a learning phase of 156 steps. After this period, we 

restarted the ME at the same starting locations, and monitored for a total of 936 

additional steps.  

Analysis of space use – We examined the resulting space use distribution of the ME in 

two ways. First, we monitored mean squared displacement (MSD) of the cumulative 

utilization distribution over time, using the mean of the starting locations as the initial 

location. Such a cumulative MSD is comparable to calculating the total area covered 

over time, as was executed in Van Moorter et al. (2009). Second, to compare the 

relative stability of the utilization distribution over time (i.e., development of a home 

range), we calculated the predicted utilization distribution of the ME for each of the two 

years after the learning phase. We calculated the distribution by summing the u(x,t) for 

each patch over the course of the year in question. Using the resulting distributions at 

each patch location as weights, we then estimated a kernel density using a 200 m grid 

and a fixed bandwidth matrix of 1 km for easting and northing. We calculated the 

overlap between the utilization distribution of the two years using the volume of overlap 

statistic of the 95% utilization distribution (Fieberg and Kochanny 2005). As a 

comparison, we also calculated the volume of overlap between the distribution of bison 

over consecutive years (see below for how the bison data were prepared for calculating 

kernel density estimates). 

Space use of observed and simulated bison in empirical landscape 

To verify that predictions of the memory-based foraging model have 

successfully captured key empirical space use dynamics of bison, we used the integro-

difference equation approach to assess whether changes in the ME over time were 

similar to actual movement and space use data of bison from inside the boundaries of 

Prince Albert National Park. Between 2005 and 2013, we monitored the movements of A
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adult (> 2 years old) female bison using GPS collars (CanadaGPS collar 4400M, Lotek 

Engineering, Newmarket, Ontario; Telonics Argos [TGW-4780H], Telonics, Mesa, 

Arizona, USA). Locations of bison were taken every three hours. For the analysis, we 

used data from 25 bison that were collared for full consecutive years (April to March), 

resulting in a total of 41 bison-years (i.e., some bison were collared for two years). We 

then adapted the data into a patch-to-patch framework so that trajectories could be 

compared to simulations. To do so, for each individual we identified the locations that 

represented the last GPS location that was taken within a meadow, before a subsequent 

location was collected in another meadow (i.e., a patch-to-patch movement).  

For comparison, we used the integro-difference equation approach to simulate 

matched 41 trajectories. In this case, we considered the ME to represent the movement 

kernel of an individual. We monitored changes in the ME for one year (i.e., 468 steps), 

based on starting locations derived from the first meadow visited in April by the 

collared bison in each bison-year. We chose starting locations in April because this 

month represents a period when bison are in transition between their large winter range 

to their smaller summer range. As with above, we specified the vegetation growing 

season as the months May to August. We parameterized the ME using the seasonal 

coefficients ȕ and devaluation factors k reported in Merkle et al. (2014). These 

parameters include selection for relatively large meadows (See both Merkle et al. 2014 

and Dancose et al. 2011), which likely explains why the ME in this case predicts much 

less diffusive space use than the ME parameterized in our simulated landscapes. All 

other parameters (e.g., step length distribution) were specified as reported in the 

“Parameter values and starting locations” sections.  

Using the coordinates of the initial meadows as starting points, we calculated 

MSD of the ME at each time step. We then calculated the predicted utilization 

distribution of each simulated individual over the entire monitoring period by summing A
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the u(x,t) for each meadow over the course of the year, then averaging these 

distributions across each meadow for each of the 41 simulated trajectories. Using the 

resulting distributions at each meadow location as weights, we then estimated a kernel 

density using a 200 m grid and a fixed bandwidth matrix of 1 km. To assess restricted 

space use predictions, we first compared MSD between observed trajectories and the 

ME over time, with the expectation that 95% CIs of estimates would overlap over time. 

We then calculated the overlap between the utilization distribution of the observed 

bison-years and the ME (Fieberg and Kochanny 2005). We report: i) the probability that 

theoretical individuals from the ME can be found in the utilization distribution of the 

GPS collared bison, and ii) the volume of intersection between the two distributions. All 

analyses were conducted in R, version 3.1.0 (R Core Team 2014). 

Results 

Energy benefits of memory-based patch selection 

The combined memory-based foraging model included agents equipped with the 

ability to remember (while taking into account memory decay) 1) patch location, 2) a 

running mean of previous experience, and 3) patch quality (Loc + RP + Qual). Relative 

to the random forager, simulated agents using this foraging behavior experienced an 

approximately 8% higher cumulative expected energy intake rate per distance traveled 

(E) over the two years of simulation (Fig. 3, left panel). As expected, energy benefits of 

the memory-based foraging model were influenced by the spatial autocorrelation in 

patch quality. As landscapes became more clumped in their distribution of patch 

profitability, memory allowed agents to choose patches which led to higher energy 

gains (Fig. 3, left panel). For all landscapes, E peaked near parameter values that were 

six times larger than the exponent of the observed memory-based parameters. In other 

words, some amount of random movement was beneficial for the simulated foragers 

(Fig. 3, left panel).  A
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 Relative to the random forager, agents that remembered patch locations and 

biased their movements towards previously visited sites (Loc) experienced an 

approximately 3% increase in E. Keeping a running mean of the intake rate experienced 

in previously visited patches, and using it to return when past experience was better than 

local profitability (Loc + RP), was only beneficial in landscapes with relatively high 

spatial autocorrelation in patch profitability. In these cases, E was approximately 1% 

higher than for agents with only a bias towards previously visited patches. E was 

greatest for agents that remembered both patch location and quality, and biased choices 

towards patches that have a greater expected profitability than recent past experience 

(Loc + RP + Qual). These agents experienced a 5% increase in E compared to agents 

able to remember only patch locations and a reference point. Again, the increase in E 

was more pronounced in landscapes with relatively high spatial autocorrelation in patch 

profitability (Fig. 3, right panel). Although there are benefits to using spatial and 

attribute memory over random movement, the energy benefits of these abilities do not 

approach that of the informed forager. In comparison to agents equipped with the 

complete memory-based foraging model, informed agents experienced nearly twice the 

E during the simulation (Fig. 3). 

Emergent space use properties of memory-based patch selection 

A gradient of weak to strong population-level restricted space use patterns were 

observed in our simulations using the integro-difference equation approach, where the 

underlying movement process was parameterized by all three components of the 

memory-based patch selection model (Fig. 4b). These findings were consistent across 

landscapes of varying spatial autocorrelation in patch profitability. Simulations with 

parameter values of the complete memory-based patch selection model that were similar 

to observed parameters provided the least restricted space use and strongest diffusive 

space use patterns, where the final MSD was 7% smaller than the random forager A
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(Appendix E). Increasing the size of the parameter values (i.e., decreasing the influence 

of random movement over memory-based foraging behavior) resulted in the least 

diffusive space use patterns with a MSD that was up to 85% smaller than the random 

forager (Appendix E; Fig. 4b). In comparison to changing the strength of movement 

bias with respect to memory, the spatial autocorrelation of patch profitability within 

simulated landscapes had less effect on overall MSD. Differences in the ending MSD 

among landscapes were always < 5% of the differences among parameter values 

(Appendix E).  

The cumulative MSD was higher for random foragers than for simulated animals 

that used any of the three memory-based foraging model components (Fig. 4). Notably, 

in all landscapes, the full memory-based foraging model (Loc + RP + Qual) resulted in 

a slightly larger spatial distribution than a tactic with only a bias towards previously 

visited sites (Loc; Fig. 4). However, adding the reference point as a guide for 

determining when to return to previously visited sites (Loc + RP) resulted in a 

significant decrease (> 40% decrease across landscapes) in the ending MSD and 

diffusive space use patterns compared to a tactic with only a bias towards previously 

visited sites (Loc; Fig. 4). 

The stability of the total utilization distribution between years one and two of the 

simulations varied with the strength of parameter values, and to a lesser extent, the 

spatial autocorrelation of quality within simulated landscapes. In contrast to the random 

forager (i.e., volume of intersection ≈ 0.5λ), the stability of the utilization distribution 

between year one and two was strongest for populations with the largest parameter 

values (e.g., least amount of random patch use) in highly clumped and random 

landscapes (volume of intersection ≈ 0.κ1). Populations with smaller parameter values 

in any landscape were only slightly more stable (volume of intersection ≈ 0.61) than the 

random forager (Appendix F). For reference, the volume of overlap (i.e., stability) A
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between years one and two of monitoring for 15 individual bison was on average 0.68 

(SE = 0.05). 

Space use of observed and simulated bison in empirical landscape 

Space use derived from the integro-difference equation approach using the 

memory-based foraging model predicted the empirical space use of bison within Prince 

Albert National Park reasonably well (Fig. 5). The 95% CI of MSD over the course of a 

single year for both observed individuals and the simulated ME generally overlapped 

(Fig. 5a). For the UD, the probability that simulated individuals from the ME were 

found in the utilization distribution of the observed bison was 0.78. The volume of 

intersection between the two UDs was 0.60. In general the ME predicted the core area 

of the bison population in Prince Albert National Park well, but predicted a wider 

peripheral population range than actually observed (Fig. 5b, c). 

Discussion 

Recent reviews have suggested that mechanistic processes for how home range 

patterns emerge are lacking (Börger et al. 2008, Potts and Lewis 2014, Spencer 2012). 

In response to such suggestions, numerous studies on the use of memory by foragers 

have emerged (Avgar et al. 2013, Boyer and Walsh 2010, Folse et al. 1989, Nabe-

Nielsen et al. 2013, Riotte-Lambert et al. 2015, Van Moorter et al. 2009). Nonetheless, 

few studies have tested predictions regarding energy benefits and emergent space use 

patterns of memory using an empirically derived memory-based foraging model (e.g., 

Nabe-Nielsen et al. 2013). Here we evaluated such predictions using a memory-based 

movement model where animals use spatial and attribute memory to choose food 

patches based on three components: 1) whether or not they have previously visited 

them, 2) their reference point of patch profitability derived from recent foraging 

experience, and 3) their memory of the profitability of each previously visited patch. 

Using an agent-based simulation approach, we first demonstrate that in comparison to A
c

c
e

p
te

d
 A

rt
ic

le



‘This article is protected by copyright. All rights reserved.’ 

choosing patches at random, memory-based foraging decisions have adaptive value by 

increasing feeding efficiency. Second, we use an integro-difference equation approach 

to show that the use of memory by foragers leads to restrictions in population-level 

spatial distribution. Finally, the emergent space use properties of the memory-based 

patch selection model are realistic when simulating bison distribution in their natural 

habitat; the space use of simulated individuals fit the observed trajectories of free-

ranging bison reasonably well.  

Because the strength of site fidelity increases with an increase in the strength of 

movement with respect to previously visited sites, energy intake rate will be lower for 

animals with poor knowledge of the most profitable patch locations in the foraging area. 

Even if an animal has perfect memory of where it has been foraging, this information 

may not be useful if relatively high quality patches have never been visited. Thus, the 

animal could not learn anything new if it did not occasionally employ a random search 

pattern or visit a new site. For example, animals that employ an extensive search mode 

after encountering a relatively poor quality site compared to recent past experience will 

increase overall foraging efficiency (Fortin 2002). Such patch sampling behavior 

provides information about whether or not certain areas might be richer, and thus worth 

exploiting (Lima 1985). Without this ability, our simulations demonstrate how 

cumulative expected energy intake rate per distance traveled will saturate (or even 

decline) with a decrease in the probability of choosing a random patch (i.e., increasing 

the movement bias relative to memory). Indeed, frequently moving into unknown 

patches (e.g., exploratory behavior, experimental forays) affords fitness advantages, 

including enhancing an animal’s capacity to quickly adapt to changing environments 

(Lefebvre et al. 2004). Other theoretical models predict similar patterns (Boyer and 

Walsh 2010, Nabe-Nielsen et al. 2013), where incorporating intermediate levels of both 

random movement and memory-based navigation proves most efficient for foragers. A
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Whereas their models are based on the rate of switching between memory-based and 

random search movements, the patch selection model presented here combines the two, 

with the size of the parameter guiding the strength of memory-based versus random 

patch use. 

We employed stochastic, agent-based simulations and a deterministic numerical 

approach (i.e., integro-difference equation) to determine energy benefits and emergent 

space use patterns, respectively. The agent-based simulation approach was beneficial for 

monitoring intake rate of simulated agents. Yet, for determining population-level space 

use patterns, an agent-based simulation framework can be influenced by the number of 

stochastic realizations employed. Further, predictions using this framework need greater 

technical analysis to verify that they are robust to stochastic fluctuations and generally 

require significant computational power (Potts et al. 2014). Thus, we formulated a ME 

allowing for the emergent space use properties to be solved deterministically (Potts et 

al. 2014). Such a generalization of the commonly-used SSF (Fortin et al. 2005), allows 

for inference of all possible outcomes of the animals’ behavior (at the population-level) 

in a single equation (Moorcroft and Barnett 2008). The integro-difference equation 

approach provides a stepping-stone between individual-based models and 

mathematically tractable mean-field models, such as those exemplified by Moorcroft 

and Lewis (2006). By translating what an animal might remember from many previous 

time steps into a single equation defined across the entire landscape (following Potts et 

al. 2014), the model described here provides robust predictions of how memory-based 

individual-level foraging behavior results in population-level spatial distribution.  

Classic random walk models do not predict restricted space use patterns (Börger 

et al. 2008), and up until recently, space use predictions resembling a home range have 

only been produced in territorial species and central place foragers, or by defining 

landscape boundaries (Briscoe et al. 2002, Moorcroft and Lewis 2006, Potts and Lewis A
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2014, Stamps and Krishnan 1999). Recent advances by, for example, Van Moorter et al. 

(200λ) and others who have adapted Van Moorter et al.’s model (Nabe-Nielsen et al. 

2013, Riotte-Lambert et al. 2015), have used a memory-based foraging model to clearly 

demonstrate restricted space use patterns in non-territorial or central place foragers, and 

without defining boundaries.  Here, we demonstrate similar patterns of restricted space 

use based on our memory-based patch selection model. However, our model differs 

from others (e.g., Nabe-Nielsen et al. 2013, Riotte-Lambert et al. 2015, Van Moorter et 

al. 2009), because we do not assume that animals significantly depress expected 

profitability at each visit. Further, in contrast to Tan et al.’s (2002) model with memory 

enhancement and decay of previously visited sites, our model predicts a constant home 

range core that does not drift away from its starting location over time. 

In support of previous predictions (Bailey et al. 1996, Stamps and Krishnan 

1999), the ability of foragers to remember the location and the profitability of 

previously visited patches led to the highest energy gains of all memory-based foraging 

components we examined. Yet, this full memory-based model did not lead to the 

smallest possible space use distribution. Instead, similar to a Bayesian forager (Cheng et 

al. 2007), foragers that use a reference point to inform when they have entered a poor 

quality area, and thus when to return to a previously visited site, had the smallest space 

use distribution of all memory-based foraging components we examined. In addition, 

such a tactic led to higher cumulative expected energy intake rate per distance traveled 

in spatially autocorrelated landscapes compared to foragers that could only remember 

the location of previously visited sites. As previously hypothesized (Merkle et al. 2014, 

Spencer 2012), if an animal moves towards the edge of a clump of high-quality patches, 

it can “turn-around” and remain within its clump after visiting a patch that seems to be 

of rather poor-quality. Such a decision will reduce the temporal variation in energy 
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gains, which is a fundamental objective of risk-sensitive foragers (McNamara and 

Houston 1992).  

In the simulated landscapes, observed parameter values of the memory 

components were not strong enough to detect large reductions in diffusion and MSD 

(only a 7% decrease in MSD) over time compared to random foragers. Further, based on 

energy gains of agents in our simulations, we would expect parameter values of memory 

based foraging to be six times higher than observed in bison. We propose two reasons 

for why observed behavior was more similar to choosing patches at random than 

expected given the results of our simulations. First, prior to parameterizing the memory-

based patch selection model, Merkle et al. (2014) removed the first three months of 

movement data to reduce false negatives for selecting previously visited meadows. 

However, since there was little to no memory decay detected for remembering 

previously visited meadows in bison, there were likely a significant number times when 

bison chose previously visited meadows that were classified as not previously visited, 

particularly within the first year of monitoring. Such false negatives in identifying 

previously visited meadows likely biased PrevVis (or selection for previously visited 

patches) toward zero, resulting in MSD that was more similar to a random forager than 

expected. Second, variation in intake rate of digestible energy in our observed and 

simulated landscapes ranged from 600-800 kJ/min. Thus, making a foraging error and 

choosing the worst patch over the best patch only led to a maximum 25% decrease in 

intake rate for that animal. If making a patch selection error led to an expected intake 

rate of 0 kJ/min, we would expect adaptive evolution to result in a stronger influence of 

memory-based behavior than we observed. Nonetheless, our results reiterate how 

difficult it is to extract true memory processes from empirical movement patterns of 

free-ranging animals, and we suggest that our methodological advancements and 

simulation results be the focal contribution of this study. A
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There are clear differences between the expected spatial dynamics of foragers 

with memory capabilities and omniscient and randomly traveling foragers; the use of 

memory of past experiences is more likely to result in restricted space use, as commonly 

observed among mobile animals. Explicit illustrations of emergent home range patterns 

derived from empirically established movement data are particularly scarce (but see 

Nabe-Nielsen et al. 2013). In a step towards bridging this gap, our results demonstrate 

how memory-based foraging is beneficial and will result in restricted space use 

dynamics (Nabe-Nielsen et al. 2013, Van Moorter et al. 2009). Based on our 

simulations, the memory-based patch selection model developed in Merkle et al. (2014) 

makes two general predictions that are robust across foraging and spatial ecology 

disciplines. First, although it is beneficial for animals to have excellent memory, it is 

adaptive to occasionally employ random movement so as to “discover” better food 

patches or “sample” others to verify that current knowledge is still good (Boyer and 

Walsh 2010). Secondly, animals that employ such a memory-based foraging tactic will 

portray space use patterns that resemble a home range (Van Moorter et al. 2009). Our 

work therefore provides a detailed understanding of why memory-based foraging 

behavior may have evolved and how these processes give rise to restricted space use 

and home range patterns. 
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Figure Legends 

Figure 1. Flow chart depicting how various aspects of the memory-based movement 

model fit together into either an agent-based simulation or a master equation of space 

use (eq. 1). For each arrow, the quantity at the tail of the arrow feeds into the quantity at 

the head of the arrow. Where applicable, numbers in brackets refer to pertinent 

equations from the text and in Appendices C and D. 
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Figure 2. Simulated landscapes with varying levels of spatial autocorrelation in the 

expected profitability (kJ of digestible energy / min) of patches. Patches within each 

landscape have a mean expected profitability of 699.8 (SD = 22.0). Landscape 

configurations include completely random (a), the observed spatial covariance structure 

of patch profitability within the bison range of Prince Albert National Park (Canada; b), 

and five (c) and ten (d) times the spatial autocorrelation as the observed. Simulated 

landscapes were based on a random generate of a Gaussian stationary isotropic 

covariance model. For visual clarity, we only show the inner section of each landscape, 

consisting of a 20 km radius. 
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Figure 3. The energy benefits of using memory during patch selection in four 

landscapes with varying spatial autocorrelation in patch profitability (from random [a] 

to highly clumped [d]; see Fig. 2). Points represent a mean (vertical lines represent 

population-level 95% CI) of the cumulative expected energy intake rate per distance 

traveled at each step (E). Agents foraged for 936 steps (approx. two years) with varying 

influence (from the observed odds [exponent of ȕ] to 12 times the observed odds) that 

all components of the memory-based foraging model have over random movement (left 

panel), and different components of memory-based foraging model employed separately 

(with a × 6 influence of memory on movement; right panel). Types of memory 

components include: 1) a bias towards previously visited patches (i.e., Loc), 2) using a 

reference point to determine local patch quality (Loc + RP), and 3) the ability to 

remember profitability of previously visited patches (Loc + RP + Qual). For 

comparison, we include an agent choosing patches at random (“Rand”), and an 

informed forager with perfect knowledge of patch profitability and travel costs 

(“Informed”). 
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Figure 4. Mean squared displacement of the cumulative utilization distribution of 

simulated populations over time (two years, 936 steps) across the three memory-based 

patch selection components (a), and varying influence (from the observed odds 

[exponent of ȕ] to 12 times the observed odds of wild bison) that the memory-based 

behavioral model employed simultaneously has over random movement (b), as well as 

the total utilization distribution (c, d) of two of the memory-based patch selection 

components estimated using an integro-difference equation approach. Types of 

components include: 1) a bias towards previously visited patches (i.e., Loc), 2) using a 

reference point to determine local patch quality (Loc + RP), and 3) the ability to 

remember profitability of previously visited patches (Loc + RP + Qual). For illustrative 

purposes, we report results from the master equation that was monitored in the clumped 

simulated landscape (landscape d). Black lines represents mean squared displacement of 

an agent choosing patches at random. Yellow and green in b and c represent areas of 

relatively high use.  
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Figure 5. Mean squared displacement (with 95% CI in gray) of the cumulative 

utilization distribution (a) and total utilization distribution (b, c) of observed bison 

movements in Prince Albert National Park (Canada; area of approx. 1,000 km2) and 

simulated individuals using the integro-difference equation approach parameterized 

with the full memory-based foraging model in the same landscape. Information based 

on monitoring and simulations over the course of one year. Yellow and green represents 

areas of relatively high use. 
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