15 research outputs found

    Neonatal Plasma Polarizes TLR4-Mediated Cytokine Responses towards Low IL-12p70 and High IL-10 Production via Distinct Factors

    Get PDF
    Human neonates are highly susceptible to infection, which may be due in part to impaired innate immune function. Neonatal Toll-like receptor (TLR) responses are biased against the generation of pro-inflammatory/Th1-polarizing cytokines, yet the underlying mechanisms are incompletely defined. Here, we demonstrate that neonatal plasma polarizes TLR4-mediated cytokine production. When exposed to cord blood plasma, mononuclear cells (MCs) produced significantly lower TLR4-mediated IL-12p70 and higher IL-10 compared to MC exposed to adult plasma. Suppression by neonatal plasma of TLR4-mediated IL-12p70 production, but not induction of TLR4-mediated IL-10 production, was maintained up to the age of 1 month. Cord blood plasma conferred a similar pattern of MC cytokine responses to TLR3 and TLR8 agonists, demonstrating activity towards both MyD88-dependent and MyD88-independent agonists. The factor causing increased TLR4-mediated IL-10 production by cord blood plasma was heat-labile, lost after protein depletion and independent of lipoprotein binding protein (LBP) or soluble CD14 (sCD14). The factor causing inhibition of TLR4-mediated IL-12p70 production by cord blood plasma was resistant to heat inactivation or protein depletion and was independent of IL-10, vitamin D and prostaglandin E2. In conclusion, human neonatal plasma contains at least two distinct factors that suppress TLR4-mediated IL-12p70 production or induce IL-10 or production. Further identification of these factors will provide insight into the ontogeny of innate immune development and might identify novel targets for the prevention and treatment of neonatal infection

    Antibody Recognition of Cancer-Related Gangliosides and Their Mimics Investigated Using in silico Site Mapping

    Get PDF
    Modified gangliosides may be overexpressed in certain types of cancer, thus, they are considered a valuable target in cancer immunotherapy. Structural knowledge of their interaction with antibodies is currently limited, due to the large size and high flexibility of these ligands. In this study, we apply our previously developed site mapping technique to investigate the recognition of cancer-related gangliosides by anti-ganglioside antibodies. The results reveal a potential ganglioside-binding motif in the four antibodies studied, suggesting the possibility of structural convergence in the anti-ganglioside immune response. The structural basis of the recognition of ganglioside-mimetic peptides is also investigated using site mapping and compared to ganglioside recognition. The peptides are shown to act as structural mimics of gangliosides by interacting with many of the same binding site residues as the cognate carbohydrate epitopes. These studies provide important clues as to the structural basis of immunological mimicry of carbohydrates

    Innate Immune Deficiency of Extremely Premature Neonates Can Be Reversed by Interferon-γ

    Get PDF
    Background: Bacterial sepsis is a major threat in neonates born prematurely, and is associated with elevated morbidity and mortality. Little is known on the innate immune response to bacteria among extremely premature infants. Methodology/Principal Findings: We compared innate immune functions to bacteria commonly causing sepsis in 21 infants of less than 28 wks of gestational age, 24 infants born between 28 and 32 wks of gestational age, 25 term newborns and 20 healthy adults. Levels of surface expression of innate immune receptors (CD14, TLR2, TLR4, and MD-2) for Grampositive and Gram-negative bacteria were measured in cord blood leukocytes at the time of birth. The cytokine response to bacteria of those leukocytes as well as plasma-dependent opsonophagocytosis of bacteria by target leukocytes was also measured in the presence or absence of interferon-c. Leukocytes from extremely premature infants expressed very low levels of receptors important for bacterial recognition. Leukocyte inflammatory responses to bacteria and opsonophagocytic activity of plasma from premature infants were also severely impaired compared to term newborns or adults. These innate immune defects could be corrected when blood from premature infants was incubated ex vivo 12 hrs with interferon-c. Conclusion/Significance: Premature infants display markedly impaired innate immune functions, which likely account for their propensity to develop bacterial sepsis during the neonatal period. The fetal innate immune response progressivel

    Inhibition of Neuroblastoma Tumor Growth by Targeted Delivery of MicroRNA-34a Using Anti-Disialoganglioside GD2 Coated Nanoparticles

    Get PDF
    Neuroblastoma is one of the most challenging malignancies of childhood, being associated with the highest death rate in paediatric oncology, underlining the need for novel therapeutic approaches. Typically, patients with high risk disease undergo an initial remission in response to treatment, followed by disease recurrence that has become refractory to further treatment. Here, we demonstrate the first silica nanoparticle-based targeted delivery of a tumor suppressive, pro-apoptotic microRNA, miR-34a, to neuroblastoma tumors in a murine orthotopic xenograft model. These tumors express high levels of the cell surface antigen disialoganglioside GD2 (GD(2)), providing a target for tumor-specific delivery.Nanoparticles encapsulating miR-34a and conjugated to a GD(2) antibody facilitated tumor-specific delivery following systemic administration into tumor bearing mice, resulted in significantly decreased tumor growth, increased apoptosis and a reduction in vascularisation. We further demonstrate a novel, multi-step molecular mechanism by which miR-34a leads to increased levels of the tissue inhibitor metallopeptidase 2 precursor (TIMP2) protein, accounting for the highly reduced vascularisation noted in miR-34a-treated tumors.These novel findings highlight the potential of anti-GD(2)-nanoparticle-mediated targeted delivery of miR-34a for both the treatment of GD(2)-expressing tumors, and as a basic discovery tool for elucidating biological effects of novel miRNAs on tumor growth

    Polymerase delta deficiency causes syndromic immunodeficiency with replicative stress

    No full text
    Polymerase delta is essential for eukaryotic genome duplication and synthesizes DNA at both the leading and lagging strands. The polymerase delta complex is a heterotetramer comprising the catalytic subunit POLD1 and the accessory subunits POLD2, POLD3, and POLD4. Beyond DNA replication, the polymerase delta complex has emerged as a central element in genome maintenance. The essentiality of polymerase delta has constrained the generation of polymerase delta-knockout cell lines or model organisms and, therefore, the understanding of the complexity of its activity and the function of its accessory subunits. To our knowledge, no germline biallelic mutations affecting this complex have been reported in humans. In patients from 2 independent pedigrees, we have identified what we believe to be a novel syndrome with reduced functionality of the polymerase delta complex caused by germline biallelic mutations in POLD1 or POLD2 as the underlying etiology of a previously unknown autosomal-recessive syndrome that combines replicative stress, neurodevelopmental abnormalities, and immunodeficiency. Patients' cells showed impaired cell-cycle progression and replication-associated DNA lesions that were reversible upon overexpression of polymerase delta. The mutations affected the stability and interactions within the polymerase delta complex or its intrinsic polymerase activity. We believe our discovery of human polymerase delta deficiency identifies the central role of this complex in the prevention of replication-related DNA lesions, with particular relevance to adaptive immunity.Transplantation and immunomodulatio

    Postnatal development of monocyte cytokine responses to bacterial lipopolysaccharide

    No full text
    Early childhood is a period of heightened susceptibility to infection due to immaturity of the immune system, and the nature of these developmental deficiencies is only partially understood. In this study, we focused on the ontogeny of the innate immune system by investigating the capacity of mononuclear cells to secrete a wide spectrum of inflammatory cytokines in response to interferon (IFN)-gamma priming and lipopolysaccharide (LPS) stimulation, namely IL-6, IL-10, IL-12, IL-18, IL-23, tumor necrosis factor (TNF)-beta, and myxovirus resistance protein A, induced by type-I IFN, at several time points between birth (cord blood) and adulthood. Competence to produce all these cytokines followed a similar developmental pattern, with slow postnatal up-regulation from the response observed in cord blood. Unexpectedly, IL-6, IL-10, TNF-alpha, and IFN-gamma showed slow postnatal up-regulation but also elevated cord blood responses equal to or greater than the adult level. This was transient and not observed at 2 mo of age, and was not related to predelivery stress of the newborns. Variations in Toll-like receptor (TLR)4 function may account for these age related differences in cytokine responses, as TLR4 expression on neonatal monocytes post LPS stimulation was elevated and sustained relative to infants and adults
    corecore