631 research outputs found

    Evidence for Relativistic Outflows in Narrow-line Seyfert 1 Galaxies

    Get PDF
    We report the observation of features near 1 keV in the ASCA spectra from three ``Narrow Line Seyfert 1'' (NLS1) galaxies. We interpret these as oxygen absorption in a highly relativistic outflow. If interpreted as absorption edges, the implied velocities are 0.2--0.3c, near the limit predicted by ``line-locking'' radiative acceleration. If instead interpreted as broad absorption lines, the implied velocities are ~0.57c, interestingly near the velocity of particles in the last stable orbit around a Kerr black hole, although a physical interpretation of this is not obvious. The features are reminiscent of the UV absorption lines seen in broad absorption line quasars (BALQSOs), but with larger velocities, and we note the remarkable similarities in the optical emission line and broad band properties of NLS1s and low-ionization BALQSOs.Comment: 9 pages using (AASTeX) aaspp4.sty and 2 Postscript figures. Accepted for publication in Astrophysical Journal Letter

    Thermal transport of the XXZ chain in a magnetic field

    Full text link
    We study the heat conduction of the spin-1/2 XXZ chain in finite magnetic fields where magnetothermal effects arise. Due to the integrability of this model, all transport coefficients diverge, signaled by finite Drude weights. Using exact diagonalization and mean-field theory, we analyze the temperature and field dependence of the thermal Drude weight for various exchange anisotropies under the condition of zero magnetization-current flow. First, we find a strong magnetic field dependence of the Drude weight, including a suppression of its magnitude with increasing field strength and a non-monotonic field-dependence of the peak position. Second, for small exchange anisotropies and magnetic fields in the massless as well as in the fully polarized regime the mean-field approach is in excellent agreement with the exact diagonalization data. Third, at the field-induced quantum critical line between the para- and ferromagnetic region we propose a universal low-temperature behavior of the thermal Drude weight.Comment: 9 pages REVTeX4 including 5 figures, revised version, refs. added, typos correcte

    Minimal Work Principle and its Limits for Classical Systems

    Full text link
    The minimal work principle asserts that work done on a thermally isolated equilibrium system, is minimal for the slowest (adiabatic) realization of a given process. This principle, one of the formulations of the second law, is operationally well-defined for any finite (few particle) Hamiltonian system. Within classical Hamiltonian mechanics, we show that the principle is valid for a system of which the observable of work is an ergodic function. For non-ergodic systems the principle may or may not hold, depending on additional conditions. Examples displaying the limits of the principle are presented and their direct experimental realizations are discussed.Comment: 4 + epsilon pages, 1 figure, revte

    Minimal work principle: proof and counterexamples

    Full text link
    The minimal work principle states that work done on a thermally isolated equilibrium system is minimal for adiabatically slow (reversible) realization of a given process. This principle, one of the formulations of the second law, is studied here for finite (possibly large) quantum systems interacting with macroscopic sources of work. It is shown to be valid as long as the adiabatic energy levels do not cross. If level crossing does occur, counter examples are discussed, showing that the minimal work principle can be violated and that optimal processes are neither adiabatically slow nor reversible. The results are corroborated by an exactly solvable model.Comment: 13 pages, revtex, 2 eps figure

    The high-mass disk candidates NGC7538IRS1 and NGC7538S

    Full text link
    Context: The nature of embedded accretion disks around forming high-mass stars is one of the missing puzzle pieces for a general understanding of the formation of the most massive and luminous stars. Methods: Using the Plateau de Bure Interferometer at 1.36mm wavelengths in its most extended configuration we probe the dust and gas emission at ~0.3",corresponding to linear resolution elements of ~800AU. Results: NGC7538IRS1 remains a single compact and massive gas core with extraordinarily high column densities, corresponding to visual extinctions on the order of 10^5mag, and average densities within the central 2000AU of ~2.1x10^9cm^-3 that have not been measured before. We identify a velocity gradient across in northeast-southwest direction that is consistent with the mid-infrared emission, but we do not find a gradient that corresponds to the proposed CH3OH maser disk. The spectral line data toward NGC7538IRS1 reveal strong blue- and red-shifted absorption toward the mm continuum peak position. The red-shifted absorption allows us to estimate high infall rates on the order of 10^-2 Msun/yr. Although we cannot prove that the gas will be accreted in the end, the data are consistent with ongoing star formation activity in a scaled-up low-mass star formation scenario. Compared to that, NGC7538S fragments in a hierarchical fashion into several sub-sources. While the kinematics of the main mm peak are dominated by the accompanying jet, we find rotational signatures from a secondary peak. Furthermore, strong spectral line differences exist between the sub-sources which is indicative of different evolutionary stages within the same large-scale gas clump.Comment: 15 pages, 12 figures, accepted for A&

    Intermediate temperature dynamics of one-dimensional Heisenberg antiferromagnets

    Full text link
    We present a general theory for the intermediate temperature (T) properties of Heisenberg antiferromagnets of spin-S ions on p-leg ladders, valid for 2Sp even or odd. Following an earlier proposal for 2Sp even (Damle and Sachdev, cond-mat/9711014), we argue that an integrable, classical, continuum model of a fixed-length, 3-vector applies over an intermediate temperature range; this range becomes very wide for moderate and large values of 2Sp. The coupling constants of the effective model are known exactly in terms of the energy gap above the ground state (for 2Sp even) or a crossover scale (for 2Sp odd). Analytic and numeric results for dynamic and transport properties are obtained, including some exact results for the spin-wave damping. Numerous quantitative predictions for neutron scattering and NMR experiments are made. A general discussion on the nature of T>0 transport in integrable systems is also presented: an exact solution of a toy model proves that diffusion can exist in integrable systems, provided proper care is taken in approaching the thermodynamic limit.Comment: 38 pages, including 12 figure

    Characterizations of how species mediate ecosystem properties require more comprehensive functional effect descriptors

    Get PDF
    The importance of individual species in mediating ecosystem process and functioning is generally accepted, but categorical descriptors that summarize species-specific contributions to ecosystems tend to reference a limited number of biological traits and underestimate the importance of how organisms interact with their environment. Here, we show how three functionally contrasting sediment-dwelling marine invertebrates affect fluid and particle transport - important processes in mediating nutrient cycling - and use high-resolution reconstructions of burrow geometry to determine the extent and nature of biogenic modification. We find that individual functional effect descriptors fall short of being able to adequately characterize how species mediate the stocks and flows of important ecosystem properties and that, in contrary to common practice and understanding, they are not substitutable with one another because they emphasize different aspects of species activity and behavior. When information derived from these metrics is combined with knowledge of how species behave and modify their environment, however, detailed mechanistic information emerges that increases the likelihood that a species functional standing will be appropriately summarized. Our study provides evidence that more comprehensive functional effect descriptors are required if they are to be of value to those tasked with projecting how altered biodiversity will influence future ecosystems

    Translation of evidence-based Assistive Technologies into stroke rehabilitation: Users' perceptions of the barriers and opportunities

    Get PDF
    Background: Assistive Technologies (ATs), defined as "electrical or mechanical devices designed to help people recover movement", demonstrate clinical benefits in upper limb stroke rehabilitation; however translation into clinical practice is poor. Uptake is dependent on a complex relationship between all stakeholders. Our aim was to understand patients', carers' (P&Cs) and healthcare professionals' (HCPs) experience and views of upper limb rehabilitation and ATs, to identify barriers and opportunities critical to the effective translation of ATs into clinical practice. This work was conducted in the UK, which has a state funded healthcare system, but the findings have relevance to all healthcare systems. Methods. Two structurally comparable questionnaires, one for P&Cs and one for HCPs, were designed, piloted and completed anonymously. Wide distribution of the questionnaires provided data from HCPs with experience of stroke rehabilitation and P&Cs who had experience of stroke. Questionnaires were designed based on themes identified from four focus groups held with HCPs and P&Cs and piloted with a sample of HCPs (N = 24) and P&Cs (N = 8). Eight of whom (four HCPs and four P&Cs) had been involved in the development. Results: 292 HCPs and 123 P&Cs questionnaires were analysed. 120 (41%) of HCP and 79 (64%) of P&C respondents had never used ATs. Most views were common to both groups, citing lack of information and access to ATs as the main reasons for not using them. Both HCPs (N = 53 [34%]) and P&C (N = 21 [47%]) cited Functional Electrical Stimulation (FES) as the most frequently used AT. Research evidence was rated by HCPs as the most important factor in the design of an ideal technology, yet ATs they used or prescribed were not supported by research evidence. P&Cs rated ease of set-up and comfort more highly. Conclusion: Key barriers to translation of ATs into clinical practice are lack of knowledge, education, awareness and access. Perceptions about arm rehabilitation post-stroke are similar between HCPs and P&Cs. Based on our findings, improvements in AT design, pragmatic clinical evaluation, better knowledge and awareness and improvement in provision of services will contribute to better and cost-effective upper limb stroke rehabilitation. © 2014 Hughes et al.; licensee BioMed Central Ltd

    Nucleon Spin Fluctuations and Neutrino-Nucleon Energy Transfer in Supernovae

    Full text link
    The formation of neutrino spectra in a supernova depends crucially on strength and inelasticity of weak interactions in hot nuclear matter. Neutrino interactions with nonrelativistic nucleons are mainly governed by the dynamical structure function for the nucleon spin density which describes its fluctuations. It has recently been shown that these fluctuations give rise to a new mode of energy transfer between neutrinos and nucleons which inside the neutrinosphere is of comparable or greater importance than ordinary recoil. We calculate numerically the spin density structure function in the limit of a dilute, non-degenerate medium from exact two-nucleon wave functions for some representative nuclear interaction potentials. We show that spectrum and magnitude of the energy transfer can deviate significantly from those based on the Born approximation. They are, however, rather insensitive to the particular nuclear potential as long as it reproduces experimental nucleon scattering phase shifts at energies up to a few tens of MeV. We also compare with calculations based on a one-pion exchange potential in Born approximation and briefly comment on their applicability near the center of a supernova core. Our study is relevant for numerical simulations of the neutrino spectra emerging from type-II supernovae.Comment: 11 latex pages, 3 postscript figures included, uses epsf.sty and revtex.sty in two-column format, submitted to Physical Review

    GASKAP -- The Galactic ASKAP Survey

    Get PDF
    A survey of the Milky Way disk and the Magellanic System at the wavelengths of the 21-cm atomic hydrogen (HI) line and three 18-cm lines of the OH molecule will be carried out with the Australian Square Kilometre Array Pathfinder telescope. The survey will study the distribution of HI emission and absorption with unprecedented angular and velocity resolution, as well as molecular line thermal emission, absorption, and maser lines. The area to be covered includes the Galactic plane (|b|< 10deg) at all declinations south of delta = +40deg, spanning longitudes 167deg through 360deg to 79deg at b=0deg, plus the entire area of the Magellanic Stream and Clouds, a total of 13,020 square degrees. The brightness temperature sensitivity will be very good, typically sigma_T ~ 1 K at resolution 30arcsec and 1 km/s. The survey has a wide spectrum of scientific goals, from studies of galaxy evolution to star formation, with particular contributions to understanding stellar wind kinematics, the thermal phases of the interstellar medium, the interaction between gas in the disk and halo, and the dynamical and thermal states of gas at various positions along the Magellanic Stream.Comment: 45 pages, 8 figures, Pub. Astron. Soc. Australia (in press
    • …
    corecore