157 research outputs found

    Expanded Vandermonde powers and sum rules for the two-dimensional one-component plasma

    Full text link
    The two-dimensional one-component plasma (2dOCP) is a system of NN mobile particles of the same charge qq on a surface with a neutralising background. The Boltzmann factor of the 2dOCP at temperature TT can be expressed as a Vandermonde determinant to the power Γ=q2/(kBT)\Gamma=q^{2}/(k_B T). Recent advances in the theory of symmetric and anti-symmetric Jack polymonials provide an efficient way to expand this power of the Vandermonde in their monomial basis, allowing the computation of several thermodynamic and structural properties of the 2dOCP for NN values up to 14 and Γ\Gamma equal to 4, 6 and 8. In this work, we explore two applications of this formalism to study the moments of the pair correlation function of the 2dOCP on a sphere, and the distribution of radial linear statistics of the 2dOCP in the plane

    Two-dimensional one-component plasma on a Flamm's paraboloid

    Full text link
    We study the classical non-relativistic two-dimensional one-component plasma at Coulomb coupling Gamma=2 on the Riemannian surface known as Flamm's paraboloid which is obtained from the spatial part of the Schwarzschild metric. At this special value of the coupling constant, the statistical mechanics of the system are exactly solvable analytically. The Helmholtz free energy asymptotic expansion for the large system has been found. The density of the plasma, in the thermodynamic limit, has been carefully studied in various situations

    Critical behavior of Josephson-junction arrays at f=1/2

    Full text link
    The critical behavior of frustrated Josephson-junction arrays at f=1/2f=1/2 flux quantum per plaquette is considered. Results from Monte Carlo simulations and transfer matrix computations support the identification of the critical behavior of the square and triangular classical arrays and the one-dimensional quantum ladder with the universality class of the XY-Ising model. In the quantum ladder, the transition can happen either as a simultaneous ordering of the Z2Z_2 and U(1)U(1) order parameters or in two separate stages, depending on the ratio between interchain and intrachain Josephson couplings. For the classical arrays, weak random plaquette disorder acts like a random field and positional disorder as random bonds on the Z2Z_2 variables. Increasing positional disorder decouples the Z2Z_2 and U(1)U(1) variables leading to the same critical behavior as for integer ff.Comment: 9 pages, Latex, workshop on JJA, to appear in Physica

    Glassy Vortex State in a Two-Dimensional Disordered XY-Model

    Full text link
    The two-dimensional XY-model with random phase-shifts on bonds is studied. The analysis is based on a renormalization group for the replicated system. The model is shown to have an ordered phase with quasi long-range order. This ordered phase consists of a glass-like region at lower temperatures and of a non-glassy region at higher temperatures. The transition from the disordered phase into the ordered phase is not reentrant and is of a new universality class at zero temperature. In contrast to previous approaches the disorder strength is found to be renormalized to larger values. Several correlation functions are calculated for the ordered phase. They allow to identify not only the transition into the glassy phase but also an additional crossover line, where the disconnected vortex correlation changes its behavior on large scales non-analytically. The renormalization group approach yields the glassy features without a breaking of replica symmetry.Comment: latex 12 pages with 3 figures, using epsf.sty and multicol.st

    Asynchronous food-web pathways could buffer the response of Serengeti predators to El Niño southern oscillation

    Get PDF
    Understanding how entire ecosystems maintain stability in the face of climatic and human disturbance is one of the most fundamental challenges in ecology. Theory suggests that a crucial factor determining the degree of ecosystem stability is simply the degree of synchrony with which different species in ecological food webs respond to environmental stochasticity. Ecosystems in which all food-web pathways are affected similarly by external disturbance should amplify variability in top carnivore abundance over time due to population interactions, whereas ecosystems in which a large fraction of pathways are nonresponsive or even inversely responsive to external disturbance will have more constant levels of abundance at upper trophic levels. To test the mechanism underlying this hypothesis, we used over half a century of demographic data for multiple species in the Serengeti (Tanzania) ecosystem to measure the degree of synchrony to variation imposed by an external environmental driver, the El Niño Southern Oscillation (ENSO). ENSO effects were mediated largely via changes in dry-season vs. wet-season rainfall and consequent changes in vegetation availability, propagating via bottom-up effects to higher levels of the Serengeti food web to influence herbivores, predators and parasites. Some species in the Serengeti food web responded to the influence of ENSO in opposite ways, whereas other species were insensitive to variation in ENSO. Although far from conclusive, our results suggest that a diffuse mixture of herbivore responses could help buffer top carnivores, such as Serengeti lions, from variability in climate. Future global climate changes that favor some pathways over others, however, could alter the effectiveness of such processes in the future

    Sine-Gordon/Coulomb Gas Soliton Correlation Functions and an Exact Evaluation of the Kosterlitz-Thouless Critical Exponent

    Full text link
    We present an exact derivation for the asymptotic large distance behavior of the spin two-point correlation function in the XY-model. This allows for the exact obtainment of the critical exponent η=1/4\eta=1/4 at the Kosterlitz-Thouless transition that occurs in this model and in the 2D neutral Coulomb gas and which has been previously obtained by scaling arguments. In order to do that, we use the language of sine-Gordon theory to obtain a Coulomb Gas description of the XY-model spin correlation function, which becomes identified with the soliton correlator of that theory. Using a representation in terms of bipolar coordinates we obtain an exact expression for the asymptotic large distance behavior of the relevant correlator at β2=8π\beta^2=8\pi, which corresponds to the Kosterlitz-Thouless transition. The result is obtained by approaching this point from the plasma (high-temperature) phase of the gas. The vortex correlator of the XY-model is also obtained using the same procedure.Comment: To appear in J. Stat. Phys., 11 page

    Stochastic processes and conformal invariance

    Full text link
    We discuss a one-dimensional model of a fluctuating interface with a dynamic exponent z=1z=1. The events that occur are adsorption, which is local, and desorption which is non-local and may take place over regions of the order of the system size. In the thermodynamic limit, the time dependence of the system is given by characters of the c=0c=0 conformal field theory of percolation. This implies in a rigorous way a connection between CFT and stochastic processes. The finite-size scaling behavior of the average height, interface width and other observables are obtained. The avalanches produced during desorption are analyzed and we show that the probability distribution of the avalanche sizes obeys finite-size scaling with new critical exponents.Comment: 4 pages, 6 figures, revtex4. v2: change of title and minor correction

    Quantum Interference in Superconducting Wire Networks and Josephson Junction Arrays: Analytical Approach based on Multiple-Loop Aharonov-Bohm Feynman Path-Integrals

    Get PDF
    We investigate analytically and numerically the mean-field superconducting-normal phase boundaries of two-dimensional superconducting wire networks and Josephson junction arrays immersed in a transverse magnetic field. The geometries we consider include square, honeycomb, triangular, and kagome' lattices. Our approach is based on an analytical study of multiple-loop Aharonov-Bohm effects: the quantum interference between different electron closed paths where each one of them encloses a net magnetic flux. Specifically, we compute exactly the sums of magnetic phase factors, i.e., the lattice path integrals, on all closed lattice paths of different lengths. A very large number, e.g., up to 108110^{81} for the square lattice, exact lattice path integrals are obtained. Analytic results of these lattice path integrals then enable us to obtain the resistive transition temperature as a continuous function of the field. In particular, we can analyze measurable effects on the superconducting transition temperature, Tc(B)T_c(B), as a function of the magnetic filed BB, originating from electron trajectories over loops of various lengths. In addition to systematically deriving previously observed features, and understanding the physical origin of the dips in Tc(B)T_c(B) as a result of multiple-loop quantum interference effects, we also find novel results. In particular, we explicitly derive the self-similarity in the phase diagram of square networks. Our approach allows us to analyze the complex structure present in the phase boundaries from the viewpoint of quantum interference effects due to the electron motion on the underlying lattices.Comment: 18 PRB-type pages, plus 8 large figure

    Mathematics of Gravitational Lensing: Multiple Imaging and Magnification

    Full text link
    The mathematical theory of gravitational lensing has revealed many generic and global properties. Beginning with multiple imaging, we review Morse-theoretic image counting formulas and lower bound results, and complex-algebraic upper bounds in the case of single and multiple lens planes. We discuss recent advances in the mathematics of stochastic lensing, discussing a general formula for the global expected number of minimum lensed images as well as asymptotic formulas for the probability densities of the microlensing random time delay functions, random lensing maps, and random shear, and an asymptotic expression for the global expected number of micro-minima. Multiple imaging in optical geometry and a spacetime setting are treated. We review global magnification relation results for model-dependent scenarios and cover recent developments on universal local magnification relations for higher order caustics.Comment: 25 pages, 4 figures. Invited review submitted for special issue of General Relativity and Gravitatio

    Feeding ecology of five commercial shark species of the Celtic Sea through stable isotope and trace metal analysis

    Full text link
    In order to trace their feeding habits, stable carbon and nitrogen isotope ratios (delta(15)N and delta(13)C), as well as trace metal concentrations (Zn, Cd, Fe, Cu, Se and Hg) were analysed in the tissues of five commercial shark species from the Celtic Sea: the tope shark Galeorhinus galeus, the black-mouthed catshark Galeus melastomus, the starry smooth hound Mustelus asterias, the spiny dogfish Squalus acanthias and the lesser-spotted dogfish Scyliorhinus canicula. Our results were compared to previously described stomach contents and isotopic composition of potential preys. Isotopic ratio delta(15)N suggested that tope sharks fed at a higher trophic level (16.7 parts per thousand in the muscle) than the other species, reflecting its piscivorous diet. The lower values of spiny dogfish (11.6 parts per thousand in the muscle) might be explained, amongst other things, by either its migratory behaviour or its preference for preys from lower trophic levels. Cd and Hg were correlated with isotopic ratios delta(13)C and delta(15)N, and were shown to be diet-related whereas Zn, Fe and Cu seemed much more linked to species-specific metabolism. Although this multidisciplinary approach is revealed as a useful tool for the study of shark ecology, the lack of known trophic fractionation suggests that isotopic data be compared to traditional diet analyses. (c) 2005 Elsevier Ltd. All rights reserved.Peer reviewe
    • …
    corecore