158 research outputs found

    Alignment of helical membrane protein sequences using AlignMe

    Get PDF
    Few sequence alignment methods have been designed specifically for integral membrane proteins, even though these important proteins have distinct evolutionary and structural properties that might affect their alignments. Existing approaches typically consider membrane-related information either by using membrane-specific substitution matrices or by assigning distinct penalties for gap creation in transmembrane and non-transmembrane regions. Here, we ask whether favoring matching of predicted transmembrane segments within a standard dynamic programming algorithm can improve the accuracy of pairwise membrane protein sequence alignments. We tested various strategies using a specifically designed program called AlignMe. An updated set of homologous membrane protein structures, called HOMEP2, was used as a reference for optimizing the gap penalties. The best of the membrane-protein optimized approaches were then tested on an independent reference set of membrane protein sequence alignments from the BAliBASE collection. When secondary structure (S) matching was combined with evolutionary information (using a position-specific substitution matrix (P)), in an approach we called AlignMePS, the resultant pairwise alignments were typically among the most accurate over a broad range of sequence similarities when compared to available methods. Matching transmembrane predictions (T), in addition to evolutionary information, and secondary-structure predictions, in an approach called AlignMePST, generally reduces the accuracy of the alignments of closely-related proteins in the BAliBASE set relative to AlignMePS, but may be useful in cases of extremely distantly related proteins for which sequence information is less informative. The open source AlignMe code is available at https://sourceforge.net/projects/alignme​/, and at http://www.forrestlab.org, along with an online server and the HOMEP2 data set

    Two models of the influenza A M2 channel domain: verification by comparison

    Get PDF
    Background: The influenza M2 protein is a simple membrane protein, containing a single transmembrane helix. It is representative of a very large family of single-transmembrane helix proteins. The functional protein is a tetramer, with the four transmembrane helices forming a proton-permeable channel across the bilayer. Two independently derived models of the M2 channel domain are compared, in order to assess the success of applying molecular modelling approaches to simple membrane proteins.Results: The Cα RSMD between the two models is 1.7 å. Both models are composed of a left-handed bundle of helices, with the helices tilted roughly 15° relative to the (presumed) bilayer normal. The two models have similar pore radius profiles, with a pore cavity lined by the Ser31 and Gly34 residues and a pore constriction formed by the ring of His37 residues.Conclusions:Independent studies of M2 have converged on the same structural model for the channel domain. This model is in agreement with solid state NMR data. In particular, both model and NMR data indicate that the M2 helices are tilted relative to the bilayer normal and form a left-handed bundle. Such convergence suggests that, at least for simple membrane proteins, restraints-directed modelling might yield plausible models worthy of further computational and experimental investigation

    Computational and Experimental Studies of Substrate Binding, Conformational Change and Importance of the Trimeric State in the Glycine Betaine Transporter BetP

    Get PDF
    The glycine betaine/sodium symporter BetP responds to changes in external osmolality by regulation of its transport activity. A recent X-ray structure of BetP confirms that it is a homotrimer and in this structure each protomer adopts an identical conformation, in which the pathway is occluded from both sides. Despite the availability of a wealth of experimental data for BetP, the structures of the alternate states (e.g., open to the outside of the cell), molecular mechanisms of substrate and Na<sup>+</sup> binding and transport, as well as the functional implications of the trimeric state remain poorly understood. To address these questions, we carried out computational studies using a range of techniques to derive hypotheses that were then tested experimentally. First, to identify structural features of the alternate states, we developed a procedure for flexible fitting of the X-ray structure of BetP into a lower-resolution cryo-EM map of BetP in a more native lipid environment, in which the three protomers have different conformations. These results suggest that: (i) the protomers adopt distinct conformational states relevant to the transport cycle; and (ii) there is conformational coupling between the protomers. Second, we performed all-atom molecular dynamics simulations and in silico alanine scanning of BetP trimers in order to identify interface residues crucial for maintaining the trimeric state. Mutations of these residues to alanine were introduced experimentally revealing that the isolated monomers are functional, and that the trimeric state is important for the regulation and higher activity of the protein. Finally, using molecular modeling and biochemical experiments we identified two Na<sup>+</sup> binding sites in BetP that could not be resolved in the 3.35 Ã… resolution X-ray structure

    Loop modeling: Sampling, filtering, and scoring

    Get PDF
    We describe a fast and accurate protocol, LoopBuilder, for the prediction of loop conformations in proteins. The procedure includes extensive sampling of backbone conformations, side chain addition, the use of a statistical potential to select a subset of these conformations, and, finally, an energy minimization and ranking with an all-atom force field. We find that the Direct Tweak algorithm used in the previously developed LOOPY program is successful in generating an ensemble of conformations that on average are closer to the native conformation than those generated by other methods. An important feature of Direct Tweak is that it checks for interactions between the loop and the rest of the protein during the loop closure process. DFIRE is found to be a particularly effective statistical potential that can bias conformation space toward conformations that are close to the native structure. Its application as a filter prior to a full molecular mechanics energy minimization both improves prediction accuracy and offers a significant savings in computer time. Final scoring is based on the OPLS/SBG-NP force field implemented in the PLOP program. The approach is also shown to be quite successful in predicting loop conformations for cases where the native side chain conformations are assumed to be unknown, suggesting that it will prove effective in real homology modeling applications. Proteins 2008. © 2007 Wiley-Liss, Inc

    Correction to:On the Role of a Conserved Methionine in the Na+-Coupling Mechanism of a Neurotransmitter Transporter Homolog (Neurochemical Research, (2022), 47, 1, (163-175), 10.1007/s11064-021-03253-w)

    Get PDF
    After publication, the authors realized that the version of the supplementary information that was originally submitted was incomplete in that it omitted results examining alternative NBFIX corrections to the force field. Those data have now been added as Supplementary Fig. S3 and they reaffirm the conclusions of the manuscript. In addition, the legend to Fig. 3b should read: “Using the NBFIX correction of Na+- methionine interactions, all Na+ ions and the substrate remain stably bound throughout the trajectory. See also Fig. S3.

    On the Role of a Conserved Methionine in the Na+-Coupling Mechanism of a Neurotransmitter Transporter Homolog

    Get PDF
    Excitatory amino acid transporters (EAAT) play a key role in glutamatergic synaptic communication. Driven by transmembrane cation gradients, these transporters catalyze the reuptake of glutamate from the synaptic cleft once this neurotransmitter has been utilized for signaling. Two decades ago, pioneering studies in the Kanner lab identified a conserved methionine within the transmembrane domain as key for substrate turnover rate and specificity; later structural work, particularly for the prokaryotic homologs Glt(Ph) and Glt(Tk), revealed that this methionine is involved in the coordination of one of the three Na(+) ions that are co-transported with the substrate. Albeit extremely atypical, the existence of this interaction is consistent with biophysical analyses of Glt(Ph) showing that mutations of this methionine diminish the binding cooperativity between substrates and Na(+). It has been unclear, however, whether this intriguing methionine influences the thermodynamics of the transport reaction, i.e., its substrate:ion stoichiometry, or whether it simply fosters a specific kinetics in the binding reaction, which, while influential for the turnover rate, do not fundamentally explain the ion-coupling mechanism of this class of transporters. Here, studies of Glt(Tk) using experimental and computational methods independently arrive at the conclusion that the latter hypothesis is the most plausible, and lay the groundwork for future efforts to uncover the underlying mechanism. SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s11064-021-03253-w) contains supplementary material, which is available to authorized users

    Role of N-glycosylation in renal betaine transport

    Get PDF
    The osmolyte and folding chaperone betaine is transported by the renal Na+-coupled GABA (γ-aminobutyric acid) symporter BGT-1 (betaine/GABA transporter 1), a member of the SLC6 (solute carrier 6) family. Under hypertonic conditions, the transcription, translation and plasma membrane (PM) insertion of BGT-1 in kidney cells are significantly increased, resulting in elevated betaine and GABA transport. Re-establishing isotonicity involves PM depletion of BGT-1. The molecular mechanism of the regulated PM insertion of BGT-1 during changes in osmotic stress is unknown. In the present study, we reveal a link between regulated PM insertion and N-glycosylation. Based on homology modelling, we identified two sites (Asn171 and Asn183) in the extracellular loop 2 (EL2) of BGT-1, which were investigated with respect to trafficking, insertion and transport by immunogold-labelling, electron microscopy (EM), mutagenesis and two-electrode voltage clamp measurements in Xenopus laevis oocytes and uptake of radiolabelled substrate into MDCK (Madin–Darby canine kidney) and HEK293 (human embryonic kidney) cells. Trafficking and PM insertion of BGT-1 was clearly promoted by N-glycosylation in both oocytes and MDCK cells. Moreover, association with N-glycans at Asn171 and Asn183 contributed equally to protein activity and substrate affinity. Substitution of Asn171 and Asn183 by aspartate individually caused no loss of BGT-1 activity, whereas the double mutant was inactive, suggesting that N-glycosylation of at least one of the sites is required for function. Substitution by alanine or valine at either site caused a dramatic loss in transport activity. Furthermore, in MDCK cells PM insertion of N183D was no longer regulated by osmotic stress, highlighting the impact of N-glycosylation in regulation of this SLC6 transporter

    Family resemblances: A common fold for some dimeric ion-coupled secondary transporters

    Get PDF
    Membrane transporter proteins catalyze the passage of a broad range of solutes across cell membranes, allowing the uptake and efflux of crucial compounds. Because of the difficulty of expressing, purifying, and crystallizing integral membrane proteins, relatively few transporter structures have been elucidated to date. Although every membrane transporter has unique characteristics, structural and mechanistic similarities between evolutionarily diverse transporters have been identified. Here, we compare two recently reported structures of membrane proteins that act as antimicrobial efflux pumps, namely MtrF from Neisseria gonorrhoeae and YdaH from Alcanivorax borkumensis, both with each other and with the previously published structure of a sodium-dependent dicarboxylate transporter from Vibrio cholerae, VcINDY. MtrF and YdaH belong to the p-aminobenzoyl-glutamate transporter (AbgT) family and have been reported as having architectures distinct from those of all other families of transporters. However, our comparative analysis reveals a similar structural arrangement in all three proteins, with highly conserved secondary structure elements. Despite their differences in biological function, the overall "design principle" of MtrF and YdaH appears to be almost identical to that of VcINDY, with a dimeric quaternary structure, helical hairpins, and clear boundaries between the transport and scaffold domains. This observation demonstrates once more that the same secondary transporter architecture can be exploited for multiple distinct transport modes, including cotransport and antiport. Based on our comparisons, we detected conserved motifs in the substrate-binding region and predict specific residues likely to be involved in cation or substrate binding. These findings should prove useful for the future characterization of the transport mechanisms of these families of secondary active transporters
    • …
    corecore