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Abstract

Few sequence alignment methods have been designed specifically for integral membrane proteins, even though these
important proteins have distinct evolutionary and structural properties that might affect their alignments. Existing
approaches typically consider membrane-related information either by using membrane-specific substitution matrices or by
assigning distinct penalties for gap creation in transmembrane and non-transmembrane regions. Here, we ask whether
favoring matching of predicted transmembrane segments within a standard dynamic programming algorithm can improve
the accuracy of pairwise membrane protein sequence alignments. We tested various strategies using a specifically designed
program called AlignMe. An updated set of homologous membrane protein structures, called HOMEP2, was used as a
reference for optimizing the gap penalties. The best of the membrane-protein optimized approaches were then tested on
an independent reference set of membrane protein sequence alignments from the BAliBASE collection. When secondary
structure (S) matching was combined with evolutionary information (using a position-specific substitution matrix (P)), in an
approach we called AlignMePS, the resultant pairwise alignments were typically among the most accurate over a broad
range of sequence similarities when compared to available methods. Matching transmembrane predictions (T), in addition
to evolutionary information, and secondary-structure predictions, in an approach called AlignMePST, generally reduces the
accuracy of the alignments of closely-related proteins in the BAliBASE set relative to AlignMePS, but may be useful in cases
of extremely distantly related proteins for which sequence information is less informative. The open source AlignMe code is
available at https://sourceforge.net/projects/alignme/, and at http://www.forrestlab.org, along with an online server and the
HOMEP2 data set.
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Introduction

Integral membrane proteins constitute 25–30% of the genes in a

given genome [1–3] and play crucial roles in cell biology by

allowing cells to interact with their environment; accordingly they

constitute pharmacological targets for around 50% of active drugs

on the market [4,5]. The study of these proteins is therefore of

considerable interest. However, historically it has been very

difficult to determine their structures experimentally [6,7]. Hence,

only ,1000 high-resolution membrane protein structures are so

far available in the Protein Data Bank [8], of which ,400 are

unique (http://blanco.biomol.uci.edu/mpstruc/). This situation

has motivated many researchers to turn to remote-template

homology modeling, in which the unknown structure of a target

sequence is modeled on a known (template) structure of a

distantly-related protein, in order to gain insights into membrane

protein function. Such studies rely on methods for detecting

relationships between two proteins, and subsequently, for

accurately aligning their sequences; both of these procedures

become increasingly difficult as the similarity between the proteins

decreases, particularly below ,20% identity. The membrane-

protein-specific multiple-sequence alignment method PRALI-

NETM [9], for example, manages to recapitulate only ,40% of

the columns in alignments in the BAliBASE membrane protein

reference set 7 [10], suggesting that further improvements are

needed.

Membrane proteins have distinct properties from their water-

soluble counterparts, because of their more complex environment.

For example, there are only two major classes of structure: a-

helical or b-barrel. Also, the membrane-spanning regions of

proteins in the a-helical class have a distinctive hydrophobic

character. The latter property inspired the early use of hydropathy

profiles for locating transmembrane regions in a sequence [11]. In

such profiles, the hydrophobicity, defined according to the values

in a particular scale, is plotted as a function of the sequence

position, typically using window averaging to smooth out the noise

[12]. Hydrophobicity was also the inspiration for a membrane-

protein sequence alignment strategy in which the hydropathy

profiles themselves are aligned, rather than the corresponding

(somewhat less conserved) primary sequences [13]. This strategy
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also allowed accurate detection of structural similarity between

apparently unrelated membrane proteins [14–16].

Aside from the hydropathy-based approach, not many sequence

alignment methodologies have been specifically developed for, and

trained and tested on, membrane proteins. This reflects in part the

limited data available for testing. Only recently have a sufficient

number of structures become available that a dataset of known

membrane protein structural homologues could be constructed to

provide knowledge-based reference alignments, as, for example, in

the HOMEP dataset [17]. Such datasets have been used to assess

methods for aligning membrane protein sequences [17] and for

aligning sequences to structures [18]. One of the best of the

methods tested on HOMEP, called HMAP, creates pair-wise

alignments of profiles representing each sequence [19]. These

profiles include information from evolution (in the form of

substitution matrices and sequence homologues), structural pro-

pensities, and structural relationships [19], but do not explicitly

describe the transmembrane location. Complex information about

a protein can also be represented in the form of a hidden Markov

model (HMM); one of the most readily-available methods used to

align such HMMs to one another, HHalign [20] has been shown

to produce accurate models of water-soluble proteins, at least in

the context of the HHpred structure prediction protocol [21,22].

However, this approach does not consider membrane-specific

information.

Two multiple sequence alignment (MSA) methods, T-Coffee

[23] and MUSCLE [24], were also found to produce relatively

accurate alignments of pairs of sequences from the HOMEP set

[17]; these approaches exclusively include information from

evolutionarily-related sequences. Other MSA methods have since

been developed, including ProbCons [25], MSAProbs [26], which,

like T-Coffee, optimize the consistency of the MSA with pairwise

alignments; and PSI-Coffee [27], which aligns each sequence by

treating it as a profile. However, none of these methods include

membrane-specific information during the alignment. TM-Coffee

(a version of PSI-Coffee that uses only membrane protein

sequences in the profiles) performs better by some measures than,

e.g., MSAProbs for the BAliBASE reference set 7, but is

significantly slower [27]. KalignP [28], a recent update of the

fast and low-memory usage method Kalign2, can handle position-

specific gap penalties, e.g., in transmembrane regions, but is less

accurate than ProbCons and T-Coffee on BAliBASE set 7 [28].

Other methodologies developed specifically for membrane

proteins include the MSA methods STAM [29] and PRALINETM

[9]. In both cases, the membrane environment is described by

using a membrane-protein specific substitution matrix (PHAT) in

the transmembrane regions, and a non-specific substitution matrix

(BLOSUM62) outside the membrane, although in STAM the

transmembrane segments are first separated out and aligned

independently, whereas in PRALINETM the sequences are

undivided. Using specific substitution rates that depend on

secondary structure, membrane position and solvent accessibility

in ‘‘membrane FUGUE’’ improved pairwise sequence-to-structure

alignments relative to FUGUE, the equivalent approach for water-

soluble proteins [18]. A recent development of membrane

FUGUE, called MP-T, incorporates homologues into a MSA in

order to guide pairwise sequence-to-structure alignments; MP-T

compared well with standard methods on a membrane protein

dataset [30].

Here, we use our membrane protein sequence alignment

program, AlignMe, to ask whether favoring matching of trans-

membrane regions – predicted either using hydrophobicity profiles

or more sophisticated transmembrane predictions – increases the

accuracy of pairwise alignments relative to the matching of

secondary-structure elements alone, in the context of a profile-

profile type alignment. We also test different methods for treating

substitution rates, using either general or position-specific substi-

tution matrices (PSSMs). We update the dataset of homologous

helical membrane proteins for optimization and evaluation of the

different strategies. We then compare the best of the different

AlignMe strategies to other available methods using the BAliBASE

membrane protein reference set 7 [10].

Methods

1.1 AlignMe Program Overview
AlignMe (for Alignment of Membrane proteins) is a protein

sequence alignment tool developed in C++, which was designed to

allow multiple different (membrane) protein descriptors to be

considered simultaneously when defining the similarity between

two aligned positions. Thus, structural properties such as

transmembrane location or secondary structure represented in

the form of profiles, can be combined with sequence and

evolutionary information represented in the form of substitution

rates (see below for more details). The description of the

transmembrane location can be a window-averaged hydropathy

plot (as used previously [16]), or output from a transmembrane

helix predictor.

The underlying algorithm in AlignMe is a Needleman-Wunsch

dynamic programming algorithm with affine gap penalties; it is

similar to that of BCL::Align [31], although AlignMe allows for

more flexible handling of profiles.

The similarity Sim between two residues (i, j) at a given

alignment position is calculated as a linear combination of values

from M input substitution matrices (S), and differences between

residue property values (V) from N input profiles:

Simi,j~
XM

m
wm � Si,j

� �
{
XN

n
wn � DVi{Vj D
� �

, ð1Þ

such that any number of substitution matrices can be combined

with any number of profiles. Using weights (w) for each input is

intended to minimize bias towards a specific input. For example, a

hydrophobicity scale containing values from –3.0 to 1.0 (i.e., a

range of 4.0) would be assigned w = 5 when used in combination

with a substitution matrix whose values range from –5 to 15 (i.e., a

range of 20).

Within AlignMe, gap-opening and gap-extension penalties can

be assigned different values according to whether the gap is at a

terminus (pterminal
o and pterminal

e , respectively), or not (po and pe,

respectively). This flexibility can be useful when aligning sequences

whose lengths differ due to additional terminal domains [31–33].

In addition, the opening or extension of non-terminal gaps may be

assigned different penalties according to an external criterion, such

as localization within a hydrophobic or otherwise conserved

region, which may be useful for alignments with long internal

insertions, because it allows smaller penalties for gaps in those

regions. Specifically, given a threshold value for one of the input

parameters, the alignment is divided into two regions, i.e., either

above or below the threshold. In the case of a hydrophobicity

scale, for example, positions with values above the threshold (i.e.,

hydrophobic) may be assigned different gap penalties (pabove
o and

pabove
e ) from hydrophilic positions with values below the threshold

(pbelow
o and pbelow

e ). This scheme consequently assigns six gap

penalty types in total, namely pabove
o , pabove

e , pterminal
e ~0:6, pbelow

e ,

pterminal
o and pterminal

e .

The source code and manual for AlignMe are provided as Files

S3 and S4.

Membrane Protein Sequence Alignment
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1.2 Input Descriptors tested with AlignMe
Differences between inputs were measured using the Wilcoxon

signed ranked test [34] and were deemed to be significant when

p,0.05.

Substitution matrices. Several different substitution matri-

ces were compared: BLOSUM62, BLOSUM30 [35], PAM240

[36], VTML [37,38], JTT membrane version [39], PHAT [40]

and bbTM [41]. Unlike BLOSUM, PAM and VTML, these JTT

and PHAT matrices were constructed specifically from datasets of

a-helical membrane proteins. A BLOSUM-like approach, in

which substitutions rates were taken from blocks of transmem-

brane protein sequence alignments with a certain degree of

divergence, was used to generate the JTT matrix [39], whereas the

PHAT matrix [40] was constructed from alignments of predicted

hydrophobic or transmembrane regions in the BLOCKS+
database. The bbTM matrix was constructed from b-barrel

protein sequences [41].

To account for the variability in evolutionary pressure for

different positions along the sequence we consider the position-

specific substitution rates of the residue types in the two input

sequences taken from position-specific substitution matrices

(PSSMs). Thus, the similarity is an average of the substitution

rate (S) at which an amino acid (A) from one sequence (i) is

replaced by the amino acid (B) of the other sequence (j), and of the

rate of the reverse substitution:

Simi,j~0:5 � Si
A?BzS

j
B?A

� �
ð2Þ

The PSSMs used as input to AlignMe were those generated

during PSIPRED predictions by a PSI-BLAST search on the

Uniref90 database dated 28th April 2009.

Hydrophobicity scales. Six different hydrophobicity scales

were tested. Several were derived from experimental free energies

of transfer of amino-acids between ethanol and water [42],

including the scales reported by Hopp and Woods (HW) [43] and

by Wimley and White (WW) [44]. The Kyte and Doolittle (KD)

[11] and the Goldman, Engelman and Steitz (GES) [45] scales

were both constructed by combining such transfer free energies

with known structural properties or theoretical considerations,

while Eisenberg and Weiss (EW) created a consensus of five other

scales [46]. White, von Heijne and colleagues (HWvH), derived a

hydrophobicity scale from probabilities of a-helical segments

inserting into a biological membrane [47], whereas the knowledge-

based unified hydrophobicity scale (UHS) [48] was constructed

from the distribution of amino acid types in known protein

structures.

When using hydrophobicity scales, any position with Vi $0 was

assigned to the membrane.

Sliding-Window averaging. To generate a smooth hydro-

phobicity profile, it is typical to replace the value at a given residue

with an average over a window of residues centered at that

position, and then process that window along the protein sequence

[11]. Here, rectangular, triangular or sinusoidal windows of length

L = 13 were tested [48]. The sinusoidal shape mimics the

amphipathic periodicity of a transmembrane helix, so that values

3.6 positions away from the center are given equal weight, while

other positions contribute less.

Transmembrane helix predictions. Three different pre-

dictors for a-helical transmembrane segments were tested:

TMHMM [2], OCTOPUS [49] and MEMSAT-SVM [3]. The

latter two methods use PSSMs in addition to the raw sequence.

These PSSMs were obtained from a PSI-BLAST search against

the corresponding recommended database, namely the Uniprot_-

Sprot database (on 1st August 2010) for MEMSAT-SVM and a

version of Uniref90 filtered for transmembrane proteins (from 4th

August 2010) for OCTOPUS [49]. The per-residue membrane

propensity was used as a profile input for AlignMe. Positions with

per-residue propensities .0.5 (for OCTOPUS and TMHMM), or

.0 (for MEMSAT-SVM) were defined as being in the membrane.

Secondary structure predictions. Two secondary structure

predictors were tested: Jufo [50] and PSIPRED [51]. PSI-BLAST

searches were run for each method on the corresponding

recommended database, i.e., Uniprot_Sprot (from 1st August

2010) and Uniref90 (from 28th April 2009), respectively. Each

method produces a three-state prediction of the probability of a

position being in a coil, a-helix or b-sheet; all three were used as

input profiles for AlignMe, with each state contributing one third

of the whole. A position was assigned to an a-helix if the predicted

probability thereof was .0.5.

1.3 HOMEP2 Training and Test Set
The original HOMEP dataset contained 36 structures [17]; in

subsequent years there was a significant increase in the number of

available membrane protein structures [52]. To update the

database, we introduced a more automated procedure. First,

structures and transmembrane definitions were collected from the

PDB_TM database (dated 17th March 2010) [53,54], and filtered

to remove NMR structures, theoretical models and structures with

resolution .3.5 Å. Individual membrane-spanning chains were

extracted and assigned to either a or b subsets, according to

PDB_TM. Next, all chains within a subset (a or b) were aligned

with all other chains using a structural alignment program SKA

[55,56], unless the two chains belonged to the same PDB entry.

For pairs of chains with .85% identical residues (according to the

structure-based alignment), only the structure with higher resolu-

tion, or smaller R-factor, was retained.

This non-redundant set was then clustered to identify families of

related structures. The clustering method (File S1, Figure S1) is

based on the protein structure distance (PSD) value that is

calculated during SKA structural alignments [55]; here we assume

that two proteins are homologous if the PSD ,1.2, which is

roughly equivalent to belonging to the same superfamily according

to the SCOP structural classification scheme [57]. The resultant

HOMEP2 data set (File S2) includes 125 structures belonging to

31 structurally distinct families. The subset of a-helical proteins

used here contains 81 structures clustered into 22 families

containing 177 pair-wise alignments (see File S1, Tables S1 and

S2). During cross-validation, 2 of those 22 families were left out in

each of 11 repetitions. The structure-based alignments obtained

using the SKA program [55] were used as references against

which alignment quality on the HOMEP2 set was evaluated (see

legend in File S1, Table S2).

1.4 Alignment A3ccuracy Measure
The accuracy of a sequence alignment is often evaluated using a

score that counts the fraction of correctly aligned positions with

respect to the reference alignment [58]. However, this score

becomes less useful for more distantly related protein sequences,

because it does not discriminate between different degrees of

mismatch. Other scores also consider the shift size, defined as the

number of positions that a residue in the test alignment is displaced

from its aligned column in the reference alignment. For example,

the fraction of positions aligned within a certain shift size has been

used [19], with the disadvantage that it introduces an arbitrary

cut-off in the accuracy measure. In a more advanced strategy, the

Cline score penalizes shifts asymptotically, so that it emphasizes

Membrane Protein Sequence Alignment
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residues that are close to their correct position and undervalues

errors of greater than four positions [59].

The Alignment Difference (AD) score used here is similar to the

mean shift error (MSE) score [60] or the position shift error (PSE)

score [61], and takes into account the full extent of any shifts.

Residues aligned to other amino acids (and not to gaps) are

assigned a score of zero if correctly aligned in the test alignment,

whereas shifted positions are penalized by the shift value, as in the

MSE score. However, in the AD score, gap-containing columns in

the test alignment are treated differently: the shift value of such

columns is defined as the mean of the shift values for the two

residues either side of the aligned gap. The final AD score is the

sum of the (negative) shift values of all columns of the reference

alignment divided by its length. Thus, a perfect alignment has an

AD score of zero, while more negative values represent less

accurate alignments. The AD score correlates with the fraction of

correctly aligned positions, but the two measures deviate at low

values, and thus the AD score provides distinct information in that

realm (File S1, Figure S2a).

1.5 Gap Penalty Optimization
A Monte Carlo scheme was used to optimize the gap penalty

values for each combination of inputs tested. Note that a

systematic optimization [58] is not computationally feasible for

optimizing six different gap penalties: if each gap penalty were

allowed to range from 0 to 10 in increments of 0.1, a systematic

search would require 1006 = 1012 alignments.

In each step of the optimization process, AlignMe alignments

were created using the current set of gap penalties and evaluated

using the AD score. To minimize bias towards large families, all

proteins in each HOMEP2 family were aligned with all others in

that family and their AD scores were averaged; the overall

alignment accuracy score for a given set of gap penalty parameters

was the sum over the scores for each family.

Starting with a randomly selected set of values (between 0 and

30) for each gap penalty parameter, the search procedure then

involved random modifications of one or more gap penalty values

from those values, or from the optimal values identified so far. The

range of allowed modifications was initially set to be very small

(with a maximal step size of 0.06) to encourage a detailed

examination of the score landscape around the current optimal

gap penalty combination. A given combination of gap penalties

was accepted if the overall alignment accuracy score was better

than the best score found so far, in which case the maximal step

size was reset to its initial value. Otherwise, that combination of

gap penalties was rejected and the search space was expanded by

increasing the maximum step size by 0.06. However, the gap

penalty values were limited to the range 0 to 30, with a maximum

step size of 30. If no improvements were found after reaching the

maximum step size, the search was repeated, starting with the

initial maximal step size of 0.06.

For each set of input descriptors, this optimization was repeated

20 times with different initial gap penalty values, which was found

to be sufficient for reasonable convergence (data not shown). The

parameters for which the alignments had the best score were then

used for that set of input descriptors. The optimal gap penalties

obtained using the JTT membrane substitution matrix were

po~16:3, pe~1:3, pterminal
o ~1:7 and pterminal

e ~0:6, consistent

with typical values (e.g. [62]), providing confidence in the

optimization procedure.

Optimization of the weights assigned to each input parameter

was found to be computationally impractical because the search

space increases by the power of N+M and the parameters did not

converge reliably.

1.6 BAliBASE Test Set
Reference 7 set of BAliBASE [10] was used as an independent

test set. This set contains 435 membrane proteins in 8

superfamilies, namely 7tm, acr, photo, dtd, ion, msl, Nat and

ptga, each multiply aligned. The first three of these families are

represented to some extent in the GPCR, multidrug efflux and

(bacterio)rhodopsin families, respectively, of HOMEP2 (Table S1).

During the evaluation, alignments were generated for all pairs of

sequences in the 8 superfamilies. Since we evaluate pairwise

sequence alignments, we calculated the fraction of correctly

aligned residues as well as the average shift for each alignment,

rather than SP (Sum of Pairs) or TC (Total Column) scores, which

describe the accuracy of MSAs.

The so-called ‘core’ regions provided by BAliBASE were not

analyzed, as they have been shown to correspond only weakly to

conserved secondary structure elements in this set [63]. Instead,

we analysed segments in each pairwise alignment that were

predicted to be transmembrane in both sequences by MEMSAT-

SVM; this predictor is the most accurate (see Section 2.1), and

using it here avoids bias in the analysis towards one of the

alignment methods that uses OCTOPUS (AlignMePST; see

Section 2.4).

1.7 Alignment Accuracy Tests Based on Homology
Models

The accuracy of the alignments in the HOMEP2 set was also

assessed by building homology models based on each of the

alignments, and comparing them to the native structure. For every

pair of protein sequences, each protein was modeled using the

structure of the other protein as a template. In each case, five

models were created using Modeller v9.9 and the one with the best

(lowest) DOPE score was evaluated using GDT_TS (global

distance test total score) and AL4 (aligned within four positions)

scores [65]. The GDT_TS score is defined as the percentage of Ca
atom pairs from the model and the native structure averaged over

four different cutoff distances (i.e., 1, 2, 4 and 8 Å) and correlates

closely with the percentage of correctly-aligned residues (File S1,

Figure S2b). By contrast AL4 considers all positions that are up to

10 Å apart, corresponding to an approximate shift of four

alignment positions (File S1, Figure S2c), which allows a clearer

discrimination between low-accuracy models than GDT_TS since

it is not dominated by the information at the other cutoff levels.

For a helical membrane protein, shifts of four positions can still be

readily overcome by manual adjustments to the alignment, and

thus AL4 describes all residues in a model that may be refined

manually.

1.8 Other Alignment Methods Tested
Alignments were also calculated with HMAP [19], T-Coffee

v8.9.1 [23], MUSCLE v3.7 [24], ProbCons v1.12 [25], MSA-

Probs v0.9.4 [26] and HHalign v1.5.0 [20]. For MSAs, sequence

homologues for each of the sequence were identified using a PSI-

BLAST search on the non-redundant (nr) database dated 4th

August 2010, with five iterations, an E-value cut-off of 1024 and a

maximum of 2500 sequences. Sequences in the PSI-BLAST results

that were more than twice the length of the query were filtered

out. The remaining sequences were clustered using UCLUST [66]

with the original sequence taken as the representative of the first

cluster. For T-Coffee, ProbCons and MSAProbs, which are

extremely memory- and cpu-intensive, it was necessary to reduce

the number of input sequences significantly in order to make the

test over the whole HOMEP2 dataset computationally tractable,

and so, for all the tested MSA methods (including MUSCLE) we

Membrane Protein Sequence Alignment
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used the suggested T-Coffee protocol, namely selecting the 25

‘‘most–informative’’ homologues of each sequence (including the

query) from the UCLUST clustered results [24].

There are two different possible approaches for generating a

MSA from two query sequences and their respective homologues.

In the standard approach, all results of both PSI-BLAST searches

(including the two query sequences) are combined and aligned as a

single large MSA, before extracting out the two query sequences

for scoring. The second approach, which we call the ‘‘profile-

profile’’ strategy, is to create MSAs for each query and its

homologues. The resulting two MSAs or ‘‘profiles’’ are then

aligned to one another to create a single MSA, from which the

query sequences are then extracted for scoring.

HHalign uses a similar strategy to the MSA ‘‘profile-to-profile’’

approach, but each query is described by a hidden Markov model

(HMM) based on the results from a PSI-BLAST search (as for

AlignMe PSSMs, see Section 1.2), as well as by secondary

structure predictions from PSIPRED, generated as described

above. Those HMMs were then globally aligned to each other by

using the ‘‘-mact 0.00 maximum accuracy flag and by assigning all

other parameters their default values.

HMAP was also used to calculate profile-to-profile alignments.

In this case, one of the sequences was assigned to be the query, and

its profile included evolutionary information (obtained as for

HHalign and AlignMe PSSMs, see Section 1.2) combined with

predicted secondary-structure from PSIPRED v3.2; the other

sequence was assigned to be the template, and its profile was

similar except that the secondary structure was assigned from the

structure, where available. The two profiles were then globally

aligned using HMAP.

We also tested TM-Coffee [27], but found the computational

cost prohibitive for the large number of pairwise alignments in the

BAliBASE set (see Section 2.4). STAM, PRALINETM and MP-T

were not available for local installation, and therefore could also

not be tested on our large datasets.

Figure 1. Comparison of alignment accuracy when using single input descriptors in AlignMe. The total alignment accuracy score (AD
score) for all a-helical proteins in the HOMEP2 dataset is plotted for each of the input descriptors using their optimized gap penalties, and arranged
according to increasing score for different (a) substitution matrices, (b) hydrophobicity scales (with no smoothing), (c) other transmembrane
predictions or (d) secondary structure predictions. Sequence segments with hydrophobic, helical or transmembrane scores above a given threshold
could be assigned the same (gray bars; without threshold) or different (black bars; with threshold) gap penalty values from segments below that
threshold (see Methods for definition of threshold values and abbreviations).
doi:10.1371/journal.pone.0057731.g001
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Results

We first describe the selection of input descriptors for AlignMe.

To make the comparison between descriptors as fair as possible,

gap penalties were optimized for each input tested. To this end, we

first constructed an updated set of homologous membrane protein

structures (HOMEP2; see Section 1.3), and structure-based

sequence alignments of these proteins were used as a reference.

Input descriptors were considered to be effective if the AlignMe

alignments had both more correctly aligned positions and smaller

shift errors, measured as less negative AD scores (see Section 1.4).

By also considering the shift error, we expect to help identify

methods that are effective for very distantly related proteins. The

findings are described for single inputs (Section 2.1) and then for

combinations of inputs (Section 2.2). Finally, we compare three of

the optimized AlignMe strategies with available alignment

programs for the HOMEP2 set (Section 2.3) and the BAliBASE

reference set 7 (Section 2.4).

2.1 Single Inputs
Various substitution matrices, hydrophobicity scales, secondary-

structure and transmembrane predictions were tested as individual

inputs (see Section 1.2).

Alignment using substitution matrices. Comparing align-

ments constructed using different substitution matrices as inputs

(Figure 1a) indicates that the alignments in closest agreement with

the structure-based reference alignments are obtained using

position-specific substitution rates (from PSSMs, see Section 1.2;

AD score = –24.0; p,1029). Of the general substitution matrices,

the closest agreement with the reference alignments was obtained

with the membrane-specific JTT matrix, followed by the general-

purpose VTML matrix, although the differences between JTT and

the others were not very significant (p = 0.01 to 0.33; Figure 1a).

Alignment based on hydrophobicity scales. Representing

sequences by their hydrophobicity values (without averaging their

values over a sliding window) is equivalent to using a substitution

matrix, except with a focus on one specific physicochemical

property. Alignments constructed using hydrophobicity scales

were not significantly different from the best of the general

substitution matrices (Figure 1b) if all non-terminal gaps were

penalized equally (gray bars). The accuracy increased if non-

terminal gap penalties were allowed to differ within the

transmembrane segments, but again the differences were not

statistically significant (Figure 1b, black bars; see Section 1.1). The

alignments generated using the KD, HWvH and WW hydropho-

bicity scales were significantly more accurate (p.0.05) than those

from other approaches (Figure 1b, black bars), but not significantly

different from one another (p,0.05). Window-averaging the

hydrophobicity values as in a hydropathy plot (File S1, Figure

S3) did not significantly improve the alignments compared to using

PSSMs (cf. Figure 1a).

Alignment using transmembrane predictions. More so-

phisticated predictors of the location of transmembrane helices

were also tested. Alignments generated using MEMSAT-SVM

alone were not significantly more similar to the reference

alignments than those obtained using a hydrophobicity scale or

a substitution matrix. The MEMSAT-SVM and OCTOPUS-

based alignments became significantly more accurate when

penalties were assigned differently to gaps in membrane and

non-membrane segments (black bars, Figure 1c), and these

MEMSAT-SVM alignments were also significantly (p,1024)

more accurate than those generated using the best of the

hydrophobicity scales (KD, Figure 1b). Interestingly, the similarity

to the reference alignments correlates with the accuracy of the

corresponding transmembrane prediction method: MEMSAT-

SVM is a significantly more accurate predictor (88.2% of the

residues in HOMEP2 are correctly predicted, using PDB_TM

assignments as a reference), followed by OCTOPUS (86.4%) and

TMHMM (83.0%).

Alignment using secondary structure predictions. When

representing the sequences as profiles of predicted secondary

structure type, the alignments in closest agreement with the

reference alignments were obtained using PSIPRED3.2 predic-

tions (Figure 1d). However, only the difference between Jufo and

PSIPRED3.2 is statistically significant (p = 0.01, gray bars). We

note that the other differences are not significant (p.0.05) because

of a disproportionate contribution of good PSIPRED2.6 align-

ments in the (large) aquaporin family; this contribution is not

reflected in the AD scores in Figure 1 because AD scores are

averaged over families (see Section 1.5). Here, again, the

alignment accuracy correlates with that of the underlying

prediction, with PSIPRED3.2 more accurate (75.3% of residues

are correctly predicted) than the other methods tested (74.0% for

PSIPRED2.6, and 70.4% for Jufo; p,0.05) for the HOMEP2

protein set, using DSSP assignments as a reference [67]. Notably,

allowing the penalties for gaps in a-helical structure elements to

differ from those in other regions improved the alignments

significantly (black bars, Figure 1d).

Comparing all the alignments generated with a single input

descriptor, we find that significantly more accurate alignments

were obtained using position-specific matrices (PSSMs), followed

by secondary structure predictions (PSIPRED3.2, p = 261025),

and transmembrane predictions (MEMSAT-SVM, p = 561026)

(Figure 1). This finding reflects the more detailed information

included in the evolutionary profiles compared to the secondary

structure and transmembrane predictions.

2.2. Alignment using Multiple Input Descriptors
Using the results for single inputs, we next tested alignments for

which the best two or three input descriptors were used in

combination, since inclusion of complementary information is

expected to progressively improve alignment accuracy (see, e.g.

[17,68]).

PSSMs combined with a transmembrane prediction. A

potentially useful combination for membrane proteins is evolu-

tionary information plus transmembrane propensity. The latter

can be in the form of either a smoothed hydrophobicity value or a

transmembrane prediction propensity. Interestingly, in AlignMe,

nearly all such combinations resulted in significantly more

accurate alignments than those based on the corresponding

individual input parameters, but only when gap penalties were

allowed to differ between membrane and non-membrane regions

(black bars, Figure 2a). Surprisingly, alignments based on PSSMs

were significantly more accurate when combined with OCTO-

PUS (AD score of –20.4) than with MEMSAT-SVM (AD score of

–22.8), even though MEMSAT-SVM predictions are more

accurate per se (Section 2.1). The explanation could be that

OCTOPUS predictions of two related proteins match one another

better than those of MEMSAT-SVM, or that the OCTOPUS

predictions have a simpler form, perhaps providing more

orthogonal (complementary) information to the PSSMs than the

more detailed profiles obtained from MEMSAT-SVM (File S1,

Figure S4). Alternatively, the fact that the MEMSAT-SVM values

are more evenly distributed over a wider range of values than the

OCTOPUS scores (File S1, Figure S4) and are thus given a

smaller weighting (see Section 1.1) could mean that the

MEMSAT-SVM scores can have less influence on the alignments.

Membrane Protein Sequence Alignment

PLOS ONE | www.plosone.org 6 March 2013 | Volume 8 | Issue 3 | e57731



PSSMs combined with a secondary structure

prediction. Combining secondary structure with evolutionary

information has been shown to improve profile-to-profile align-

ments for water-soluble proteins (e.g., [19]). Using AlignMe, a

similar improvement is observed in the HOMEP2 alignments

when combining PSSMs with PSIPRED predictions: compared to

the best results for alignments using secondary structure predic-

tions (AD score of –27.2) or evolutionary information (AD score of

–24.0), the combination produces significantly more accurate

alignments (AD score of –21.6, p = 0.04; Figure 2b, black bars).

Secondary structure prediction combined with a

transmembrane prediction. Alignments using combinations

of a secondary structure prediction with a transmembrane

prediction were also significantly more accurate (AD score of –

23.7 for PSIPRED combined with OCTOPUS; Figure 2b) than

alignments using each descriptor on its own (AD score of –27.2 for

PSIPRED and –52.9 for OCTOPUS; Figure 1), with OCTOPUS

again being the best choice of transmembrane predictor

(Figure 2b). This observation suggests that secondary structure

and transmembrane predictions contain complementary informa-

tion, consistent with the fact that not all secondary structure

elements in a membrane protein are within the membrane.

Indeed, among the 60% of the residues that are outside the

membrane in HOMEP2 structures (as defined by PDB_TM),

46.2% of residues are a-helical, and 7.4% are in a b-strand.

Moreover, not all transmembrane segments are fully helical [69],

and include segments of coil (7.5% of residues) and even b-sheet

(0.1% of residues).

In these combinations, when assigning gap penalties differently

to structured regions (Section 1.1), the latter may be defined using

either secondary structure or membrane propensity. We found

that using a-helix positions for this distinction (OCTOPUS and

PSIPRED*, AD score of –23.7, Figure 2b) led to significantly

(p = 0.03) more accurate alignments than when using the

transmembrane positions for assigning the thresholds (OCTO-

PUS* and PSIPRED, AD score of –24.2, Figure 2b). This makes

sense because gap insertion should be disfavored in all structured

regions, whether in the membrane or not. Nevertheless, no matter

Figure 2. Comparison of alignment accuracy when using multiple input descriptors in AlignMe. Combinations included: (a) PSSMs with
hydrophobicity descriptors or transmembrane predictions; (b) secondary structure prediction with PSSMs or transmembrane predictions; or (c)
PSSMs, PSIPRED and OCTOPUS together. The scores obtained using PSSMs or PSIPRED alone are indicated with gray lines for reference. Gap penalties
were assigned differently to sequence segments above or below a threshold (black bars), and the threshold was defined using the inputs marked by
*. For example, in the PSIPRED* & OCTOPUS combination, the threshold was assigned using PSIPRED. See legend for Figure 1 for further details.
doi:10.1371/journal.pone.0057731.g002
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how the different regions are assigned, the alignments are

significantly more accurate than when the same gap penalty

values are used in both structured and unstructured regions

(Figure 2b).

Combinations of PSSMs with secondary structure and

transmembrane predictions. The three protein descriptors

with the most useful and complementary information (PSSM,

OCTOPUS and PSIPRED3.2) were next tested in combination,

which resulted in significantly more accurate alignments than any

approach tested so far (AD score = –17.6, p,0.05, Figure 2c). A

further significant increase was obtained by assigning gap penalties

according to secondary structure propensity (AD score = –17.3,

p,0.05, Figure 2c), but not by transmembrane position (AD

score = –17.6, p = 0.32, Figure 2c).

Interestingly, the input descriptors that led to the most accurate

alignments when used alone were not always the most effective

when used in combination (e.g., OCTOPUS contributed more in

combination than alone, and the converse was found for

MEMSAT-SVM; Figures 1 and 2), presumably because a single

input may need to contain detailed information to produce an

accurate alignment, whereas in combination that information may

become redundant or even conflicting. Clearly this suggests that it

would be desirable to optimize the parameters on all combinations

of all descriptors, but unfortunately this is not computationally

tractable at this time.

In subsequent evaluations we compared three different versions

of AlignMe, in each case using gap penalties optimized for the

respective combination on the HOMEP2 membrane protein

dataset. For reference, we tested one version, called AlignMeP,

that uses only evolutionary information (PSSM), with gap penalties

of po~15:36, pe~0:88, pterminal
o ~1:69 and pterminal

e ~0:25. In the

AlignMePS version, secondary structure information

(PSIPRED3.2) was also used, with gap penalties of pabove
o ~6:80,

pabove
e ~2:28, pbelow

o ~6:22, pbelow
e ~1:37, pterminal

o ~0:29 and

pterminal
e ~0:86. Finally, we tested the effect of including trans-

membrane information within AlignMePST, where PSSMs,

PSIPRED3.2 and OCTOPUS are combined, and using gap

penalties of pabove
o ~2:96, pabove

e ~3:06, pbelow
o ~2:14, pbelow

e ~3:06,

pterminal
o ~0:07 and pterminal

e ~1:18. In both AlignMePS and

AlignMePST versions, a-helicity was used to define the gap

penalty assignment threshold.

2.3 Comparison with Other Alignment Methods on the
HOMEP2 Dataset

We compared the three AlignMe versions, i.e., with and without

secondary structure or membrane matching, to several available

multiple-sequence alignment programs, as well as the profile-to-

profile alignment program HMAP, and the HMM alignment

program HHalign (see Section 1.8). Here, we assess alignments of

the training HOMEP2 dataset, first using the structure-based

alignments as a reference, and then using the accuracy of

homology models built from those alignments as a reference-

independent measure.

Alignment accuracy relative to structure-based reference

alignments. For close homologues (.30% identical residues) in

the HOMEP2 set, the AlignMe alignments are not significantly

more accurate than other methods: AlignMeP, AlignMePS,

AlignMePST and HHalign alignments all have a high fraction

of correctly aligned residues, for example (Table 1 and File S1,

Figure S5e), and the average shift error is similarly low for

HHalign, MSAProbs, AlignMeP and AlignMePST alignments

(Table 1 and File S1, Figure S5f). However, for pairs of membrane

protein sequences in the HOMEP2 set with low (0–15%) and

moderate (15–30%) similarity, AlignMe alignments have ,2%

more correctly-aligned positions than all other methods (Table 1

and File S1, Figures S5a, S5c), which is perhaps unsurprising given

that the gap penalties are optimized for this HOMEP2 dataset.

The most accurate of the other methods by this measure are

MSAProbs and HMAP (Table 1).

Misaligned residues are shifted by significantly fewer positions in

AlignMe alignments (Table 1 and File S1, Figures S5b, S5d),

particularly when transmembrane information is included (see

AlignMePST in Table 1), reflecting the optimization of the gap

penalties to the shift-size sensitive AD score. We note that the

reduction in shift error obtained by matching transmembrane

predictions (AlignMePST cf. AlignMePS) does come at the cost of

some correctly-aligned positions, especially for sequences with

moderate similarity. As mentioned above, for homology modeling

of distantly-related pairs of proteins it can be useful to reduce the

magnitude of large shift errors since manual adjustment of an

alignment can be aided relatively easily by conservation mapping

once the helices are approximately aligned. For similar reasons, it

is also interesting to know whether the transmembrane helices

have been matched to some extent, as many (although not all)

functional residues lie in these regions. The matching of

transmembrane helices in the HOMEP2 set by AlignMe appears

to be particularly effective: using AlignMePS and AlignMePST,

$97% of the known transmembrane helices overlap by at least

half of their residues, and $62% of the helices (at least 10% more

than the next best method) overlap by at least 90% of their

residues (Table 2). These enhancements are achieved largely

because of the inclusion of secondary structure information

(compare AlignMePS to AlignMeP), and to some extent by the

matching of transmembrane predictions (compare AlignMePS to

Table 1. Accuracy of alignments generated using different
methods on the HOMEP2 data set.

0–15% (44) 15–30% (71) 30–85% (62)

%
correct shift % correctshift % correctshift

AlignMeP 30.1* 4.31 72.0 1.15 88.2 0.25*

AlignMePS 30.6* 3.35 71.5 1.16 87.9* 0.28

AlignMePST 30.7 2.73 70.4 0.85 87.5 0.21

AlignMePST x-fold 30.3 2.89 70.4 0.89 87.3 0.30

MSAProbs 28.3 7.22 68.6 1.08 85.7 0.24*

HHalign 17.3 10.50 61.8 1.75 86.5* 0.29*

HMAP 24.9 7.00 68.6 1.27 85.3 0.32

MUSCLE 26.4 9.41 68.5 1.13 85.5 0.31

Muscle profile-profile 25.6 9.77 63.6 1.65 75.6 0.86

ProbCons 26.7 8.30 67.0 1.34 84.2 0.31

T-Coffee 25.3 7.55 66.5 1.27 83.4 0.32

T-Coffee profile-profile 14.5 35.22 55.9 2.25 70.7 1.09

Results are sorted according to the level of sequence similarity of the sequence
pair, in percentage identity. The number of pairwise alignments is shown in
parentheses. The percentage of correctly aligned residues (% correct) and
average shift error size (shift) with respect to the structure-based reference
alignments (see Methods) are reported. *Values marked with an asterisk in this
and all other tables are not significantly different from those of AlignMePST (p-
value .0.05) based on a pairwise Wilcoxon signed rank test. All other values are
significantly different from those of AlignMePST. Entries in bold in this table,
and all subsequent tables, indicate the highest or best scores in that column,
including all values that are not significantly different from the best scores.
doi:10.1371/journal.pone.0057731.t001
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AlignMePST). However, even without transmembrane predic-

tions, AlignMePS also matches these segments significantly better

(8–12% more segments of distant homologs (0–15%) overlap by at

least half of their residues) than another method that considers

secondary structure (HMAP), at least on the HOMEP2 training

set.

Cross-validation. An obvious concern regarding the robust-

ness of the AlignMe method(s) is overtraining of the gap penalties

and other parameters due to the limited number of membrane

protein structures available. We first tested this by using cross-

validation: the optimization of AlignMePST was repeated using 20

of the 22 families and the resultant gap penalties used to evaluate

the alignment accuracy of the remaining two families. As shown in

Table 1 (see x-fold), the accuracy of the alignments using these gap

penalties was similar to that obtained by training and testing on

the whole HOMEP2 set. Moreover, the mean and standard

deviation of the gap penalties for the AlignMePST combination

indicates relatively small variations between cross-folds (i.e., after

optimization on different subsets): pabove
o ~3:00+0:27,

pabove
e ~3:16+0:46, pbelow

o ~2:06+0:16, pbelow
e ~2:86+0:25,

pterminal
o ~0:97+1:48 and pterminal

e ~1:23+0:06. These results

suggest that the gap penalties are not significantly over-trained

on a particular family of the HOMEP2 dataset, and thus should be

applicable to other membrane protein sequences.

Model quality. As a measure of alignment accuracy that is

independent of the reference alignments, we also constructed

structural (homology) models from the test alignments. The models

were compared to the native structures by calculating GDT_TS

and AL4 values (see Section 1.7), and also compared to ‘‘gold

standard’’ models built using sequence alignments extracted from

the SKA structural alignments.

Measured by the GDT_TS structural similarity score, several

methods have similar accuracy on average (Table 3 and File S1,

Figure S6). AlignMe alignments result in fewer very poor models

(with GDT_TS ,20%), while all other methods produce models

with GDT_TS as low as 5% for distantly related proteins of the

HOMEP2 set (File S1, Figure S6a). Using the AL4 score, which

discriminates better between low-accuracy models (see File S1,

Figure S6b), models based on AlignMePS and AlignMePST

alignments have up to 5% higher scores than the best of the other

alignment methods (Table 3). This result reflects the low average

shift error of the underlying alignments (cf. Table 1) due to the

optimization towards less negative AD scores. We note that

models built from the structure-based alignments are the most

accurate (SKA; Table 3 and File S1, Figure S6), indicating that

there remains room for improvement in alignment methods.

2.4 Comparison with Other Alignment Methods using
the BAliBASE Reference 7 Set

The alignment accuracy of the various methods was also

evaluated on an independent data set of membrane protein

sequences (reference set 7 of BAliBASE; see Section 1.6). This

dataset contains manually-curated multiple-sequence alignments,

based on PFAM alignments and optimized to improve amino acid

and secondary structure matching; no structural information was

available at the time to help guide the dataset construction [10].

Here, we analyze the accuracy of all pairwise alignments in

BAliBASE, and then separate out the results for closely and

distantly-related proteins.

AlignMePS alignments have the most correctly aligned residues

in BAliBASE set 7 on average, as well as for 7 of the 8 families

(Table 4), including those not represented in the training set.

Favoring matching of transmembrane segments with AlignMePST

results in significantly more accurate alignments for the ion family,

which has a very low average sequence identity (Table 4). The

AlignMePST alignments also rank second overall, and for the 7tm,

dtd and ptga families. Among the other methods, HMAP

alignments are also very accurate for this dataset, with the third

highest-ranking scores on average, and high-ranking scores for

four out of the eight families.

To assess whether the inclusion of transmembrane information

is useful for distantly-related proteins, we separated the BAliBASE

Table 2. Percentage of transmembrane segments in the
HOMEP2 set that are correctly aligned by each method.

0–15% (44) 15–30% (71) 30–85% (62)

f50 f90 f50 f90 f50 f90

AlignMeP 93.65 52.80 98.64 95.54 100.00* 99.31*

AlignMePS 97.00 62.43* 99.49* 96.85* 100.00* 99.08*

AlignMePST 98.32 63.73 100.00 97.17 100.00 99.77

MSAProbs 90.42 53.01 99.49* 95.90* 100.00* 99.31*

HHalign 70.50 28.61 97.05 76.97 100.00* 95.72*

HMAP 85.83 54.31 99.49* 96.87* 100.00* 99.08*

MUSCLE 82.92 49.59 99.60* 93.89 100.00* 99.04

MUSCLE profile-
profile

82.20 48.90 98.08 86.30 99.46* 88.16

ProbCons 89.73 52.17 99.49* 95.78* 100.00* 99.04

T-Coffee 88.02 51.18 99.49* 95.42 100.00* 98.85

T-Coffee profile-
profile

38.32 18.75 95.56 66.68 97.33 73.12

Transmembrane segment definitions are taken from the structures according to
the PDB_TM database (see Methods); matching is defined as correct if 50% (f50)
or 90% (f90) of the residues are aligned. Results are sorted according to the level
of sequence similarity of the sequence pair. The number of pairwise alignments
is shown in parentheses.
doi:10.1371/journal.pone.0057731.t002

Table 3. Accuracy of homology models constructed based
on HOMEP2 data set alignments from different methods.

0–15% (88) 15–30% (142) 30–85% (124)

GDT_TS AL4 GDT_TS AL4 GDT_TS AL4

AlignMeP 34.74 73.97 67.53* 90.75 83.94* 97.65

AlignMePS 38.06 79.97* 67.40* 90.52 83.79* 97.33

AlignMePST 36.30 80.48 67.36 92.19 83.96 98.03

MSAProbs 36.71* 75.00 67.33* 90.81 84.17* 97.76

HHalign 25.08 59.06 61.38 87.71 83.12 97.63

HMAP 36.33* 74.97 67.31* 90.44 83.25 97.04

MUSCLE 32.95 69.02 66.00 90.66 82.89 97.31

Muscle profile-profile 32.56 69.35 62.19 88.82 75.75 94.24

ProbCons 35.28* 72.78 67.16* 90.22 83.29 97.46

T-Coffee 35.30* 72.20 66.78 90.42 83.38 97.57

T-Coffee profile-
profile

18.27 37.85 59.30 86.58 73.03 92.95

SKA structure-baseda 46.38 85.42 71.12 93.99 85.51 98.18*

aReference alignments generated by the structure alignment program, SKA. The
number of models is shown in parentheses.
doi:10.1371/journal.pone.0057731.t003
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set into sequences assigned to the same subgroup (Table 5) or to

different subgroups (Table 6) [10]. The high ranking of the various

AlignMe methods and of HMAP remains for alignments of both

closely and distantly-related sequence pairs (Tables 5 and 6). For

pairs of proteins in the same subgroup, the AlignMePS alignments

are significantly more accurate on average (Table 5), but matching

of secondary structure is not always beneficial in those cases:

indeed, AlignMeP alignments are significantly more accurate for

the most similar sequences (in the dtd and photo families, Table 5).

Nevertheless, secondary structure and transmembrane informa-

tion becomes progressively more useful as the similarity decreases,

especially for those assigned to different subgroups (Table 6).

Within the predicted transmembrane regions of the BAliBASE

sequences (Table 7), AlignMePS alignments have the highest

proportion of correctly-aligned positions for four out of the eight

families, and the secondary-structure prediction significantly

improves the accuracy relative to the AlignMeP alignments.

Surprisingly though, the transmembrane information included in

AlignMePST does not help to correctly align more positions in the

predicted transmembrane regions of the alignments, even for the

most distantly-related family (ion; Table 7), despite the fact that

AlignMePST aligns more positions correctly over the full length of

those sequences (ion; Table 4). This result suggests that secondary

structure elements not in the membrane are correctly guided to

the appropriate places in the alignment by the transmembrane

predictions, but that within the transmembrane regions, the

secondary structure and transmembrane predictions conflict with

one another, resulting in slight errors in the TM segments

Table 4. Percentage of residues that are correctly aligned in pairwise sequence alignments from the BAliBASE reference set 7,
sorted by sequence identity of the protein families.

ion Nat ptga 7tm dtd acr photo msl mean

AlignMeP 38.9 43.5 42.1 42.5 67.1 87.0 87.9 82.5 61.4

AlignMePS 45.2 66.2 64.8 65.9 76.0 89.7 87.6 82.3 72.2

AlignMePST 48.1 58.6 58.8 59.4 71.2 86.3 82.9 76.5 67.7

MSAProbs 24.5 53.3 45.9 54.7 64.4 89.0 73.4 70.6 59.5

HHalign 39.1 48.9 42.3 38.4 42.7 49.5 67.3 59.9 48.5

HMAP 32.8 61.9 54.9 61.4 65.3 87.6 83.4 78.5 65.7

MUSCLE 27.9 56.8* 48.4 56.6 70.3 89.5 80.5 76.1* 46.7

MUSCLE profile-profile 18.5 47.1 39.7 48.2 67.4 88.5 70.4 64.1 55.5

ProbCons 23.8 52.0 44.1 54.4 63.7 88.7 69.3 66.8 57.9

T-Coffee 25.5 50.6 44.2 55.1 63.7 88.8 67.5 67.5 57.9

T-Coffee profile-profile 10.8 14.5 27.0 40.2 52.9 86.2 52.1 53.0 42.1

Numbera 1326 1711 1275 8128 1485 903 528 91

Sequence identity (%)b 11.7613.8 14.3610.8 15.9612.1 18.269.7 18.7611.5 26.9611.3 27.3616.9 35.3613.5

Mean = mean percentage of correctly-aligned residues over averages for eight families. aNumber of pair-wise alignments. bMean (6standard deviation) of the
percentage sequence identity between pairs of alignments in each family.
doi:10.1371/journal.pone.0057731.t004

Table 5. Percentage of residues that are correctly aligned in pairwise sequence alignments assigned to the same subgroup within
the BAliBASE reference set 7, sorted by sequence identity of the alignments in each protein family.

ion ptga 7tm Nat acr msl dtd photo mean

AlignMeP 62.8 83.4 67.6 80.6 93.4 82.0 90.3 94.7 81.8

AlignMePS 64.9 83.9 74.2 81.8 93.9 81.7 89.6 94.0 83.0

AlignMePST 62.9 81.7 68.4 79.3 92.4 78.3 86.9 91.4 80.2

MSAProbs 44.3 67.5 62.5 71.1 92.5* 74.4 84.5 88.8 73.2

HHalign 51.6 52.0 43.9 64.8 56.0 58.6 66.4 84.3 59.7

HMAP 50.6 75.2 69.2* 77.5* 91.7 80.9 82.8 90.6* 77.3

MUSCLE 47.0 72.3 62.6 72.4 93.0 78.0* 85.0 88.6 74.9

MUSCLE profile-profile 25.1 60.8 53.5 54.3 91.6 62.6 74.7 74.1 62.1

ProbCons 43.8 66.5 62.1 69.7 92.2 69.9 83.7 83.6 71.4

T-Coffee 45.9 69.8 64.7 72.5 92.2 76.8 85.2 87.0 74.3

T-Coffee profile-profile 45.3 66.3 63.5 70.4 92.1 71.4 84.1 83.6 72.1

Number 551 559 1082 282 420 51 84 122

Sequence identity (%) 22.1616.6 26.7611.0 28.0620.0 31.3616.7 34.4612.9 43.6612.7 49.5619.1 52.2618.1

See legend to Table 4 for more details.
doi:10.1371/journal.pone.0057731.t005
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(consistent with the small shift errors in these alignments; see

below, Tables 8,9,10). The methods that correctly align the most

positions in the predicted transmembrane regions are MSAProbs,

Probcons, HMAP and T-coffee, depending on the sequence family

(Table 7); MSAProbs and AlignMePS alignments are the highest

ranking on average (Table 7).

Finally, we also calculated the shift error in the BAliBASE

alignments, which is smallest on average for the AlignMePST and

AlignMePS alignments, followed by MSAProbs and HHalign,

while HMAP has the smallest shift error for the acr and Nat

families (Table 8). Matching of secondary structure predictions

significantly reduces the shift error relative to AlignMeP for

proteins in the same subgroup (Table 9) or in different subgroups

(Table 10), whereas transmembrane matching in AlignMePST has

the biggest positive influence on the most distantly-related

sequences (Table 10), particularly on the alignments in the ion

family (Tables 8,9,10).

Discussion

In this work, we developed a sequence alignment method called

AlignMe, which we trained on a dataset of membrane protein

structural homologues (HOMEP2). Three different strategies

(AlignMeP, AlignMePS and AlignMePST) were assessed using

the BAliBASE membrane protein dataset (set 7), and compared

with other available methods. Overall, the BAliBASE analysis

suggests that versions of AlignMe that match secondary structure

prediction profiles may be generally useful for aligning membrane

proteins (AlignMePS and AlignMePST; Tables 4,5,6,7,8,9,10).

AlignMePS alignments are more accurate than those of HMAP

and HHalign, both of which also use secondary-structure

information directly, indicating that training AlignMePS specifi-

cally on a membrane protein dataset was also advantageous. The

additional matching of transmembrane prediction profiles, how-

ever, does not improve alignments of closely-related BAliBASE

Table 6. Percentage of residues that are correctly aligned in pairwise sequence alignments assigned to different subgroups within
the BAliBASE reference set 7, sorted by sequence identity of the alignments in each protein family.

ion ptga Nat 7tm dtd photo acr msl mean

AlignMeP 21.9 9.9 36.2 38.6 65.7 85.9 81.4 83.3 52.9

AlignMePS 31.2 49.9 63.1 64.7 75.2 85.7 86.0 83.0 67.3

AlignMePST 37.5 41.0 54.5 58.0 70.3 80.3 81.0 74.2 62.1

MSAProbs 10.5 29.0 49.8 53.5 63.2 68.8 85.9 65.9 53.3

HHalign 30.2 34.8 45.8 37.6 41.3 62.2 43.8 61.6 44.6

HMAP 20.1 39.2 58.9 60.2 64.3 81.3 83.9 75.5* 60.4

MUSCLE 14.3 29.8 53.7 55.7 69.4* 78.1 86.5 73.7* 57.7

MUSCLE profile-profile 13.7 23.2 45.7 47.4 67.0 69.3 85.7 66.1 52.3

ProbCons 9.5 26.6 48.6 53.2 62.5 65.0 85.8 62.9 51.7

T-Coffee 13.5 34.3 46.5 55.3 63.6 72.8 86.1 69.7 55.2

T-Coffee profile-profile 11.5 26.9 46.7 53.8 62.5 62.6 85.9 62.7 51.6

Number 775 716 1429 7046 1401 406 483 40

Sequence identity (%) 4.361.0 7.561.6 10.963.9 16.765.4 16.867.6 19.865.5 20.461.6 24.763.3

See legend to Table 4 for more details.
doi:10.1371/journal.pone.0057731.t006

Table 7. Percentage of residues that are correctly aligned in the predicted transmembrane regions of pairwise sequence
alignments from the BAliBASE reference set 7, sorted by protein family name.

7tm acr dtd ion msl Nat photo ptga mean

AlignMeP 54.6 96.0 76.5 36.1 96.7 44.6 91.8 40.3 67.1

AlignMePS 92.6 98.0 90.1 58.3 97.1 73.6 96.0 67.2 84.1

AlignMePST 87.0 95.6 86.2 57.8 95.7 64.2 93.9 58.1 79.8

MSAProbs 95.8 98.0 89.5 62.7 96.5 69.5 91.7 72.3 84.5

HHalign 51.9 37.6 51.8 37.1 76.3 50.0 71.6 31.5 51.0

HMAP 95.1 97.6 82.8 61.5 96.0* 72.4 96.7 69.3 83.9

MUSCLE 89.5 97.6 89.1 49.7 95.0* 64.9 91.7 57.2 79.3

MUSCLE profile-profile 79.9 97.4 89.0 30.2 92.9 53.9 85.8 47.6 72.1

ProbCons 95.7 97.9 89.6 61.6 96.5 67.9 90.6 69.8 83.7

T-Coffee 95.8 98.1 89.9 65.7 96.4 66.5 88.2 69.8 83.8

T-Coffee profile-profile 75.5 98.0 83.9 12.3 91.2 18.2 71.8 49.0 62.5

Mean = mean over averages for eight families.
doi:10.1371/journal.pone.0057731.t007
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sequences, i.e., AlignMePS results in more accurate alignments for

those proteins than AlignMePST. We checked that the trans-

membrane profiles are indeed matched in the AlignMePST

alignments by calculating the difference in OCTOPUS profile

values at every position in each alignment, normalizing the total

difference by the alignment length, and summing over all

HOMEP2 alignments. This profile difference measure is smaller

(0.056) when using the transmembrane predictions in Align-

MePST than without (in AlignMePS; 0.085), confirming that the

predicted transmembrane profiles match more closely in Align-

MePST alignments. The fact that transmembrane matching does

not improve alignment accuracy for the closely-related BAliBASE

sequence pairs may reflect the errors of .10% in the transmem-

brane predictions (see Section 2.1). Indeed, the matching of

OCTOPUS predictions in the reference structure-based align-

ments is almost as poor (profile difference score of 0.079) as the

matching in the AlignMePS alignments. Such prediction errors

can potentially be cancelled out in the context of a sequence

alignment if the predictions for both sequences are incorrect in the

same way, but this is not always the case, and the likelihood of

errors canceling diminishes as the sequences diverge in similarity.

As mentioned above, another source of errors for the

AlignMePST strategy (especially in the transmembrane regions)

may be discrepancies between the secondary-structure and

transmembrane predictions. Quantifying the matching of second-

ary-structure prediction profiles as described above indicates that

the secondary structure profiles match less well in alignments

generated with transmembrane predictions (profile difference

score for AlignMePST is 0.060) than those without (profile

difference score for AlignMePS is 0.055). In other words,

transmembrane matching occurs at the expense of secondary-

structure matching.

A third possible cause of the reduced accuracy for closely-

related sequences using AlignMePST is that including a third

parameter (the transmembrane prediction) in the score for each

position diminishes the contribution of the PSSM in a deleterious

way.

The above discussion notwithstanding, the BAliBASE results

indicate that incorporating transmembrane matching is useful for

very distantly-related proteins, particularly for reducing the overall

shift error (Tables 1, 3, 6 and 8,9,10). The observations for the

accuracy in the transmembrane segments, however, are somewhat

contradictory: the overlap of the known transmembrane regions in

Table 8. Average shift error in pairwise alignments of the BAliBASE reference set 7.

ion Nat ptga 7tm dtd acr photo msl mean

AlignMeP 29.92 48.71 33.98 47.58 9.83 1.09 0.31* 0.59* 15.38

AlignMePS 28.83 2.46 3.12 3.67 1.71 0.33 0.36 0.42 5.11

AlignMePST 13.83 3.24 5.39 11.82 3.46 0.42 0.31 0.47 4.87

MSAProbs 37.00 2.42* 5.99 5.17 4.29 0.34 1.36 0.84 6.87

HHalign 15.89 4.81 7.96 9.91 6.37 1.61 0.84 1.78 6.15

HMAP 35.66 1.95 6.18 4.61 6.84 0.31 0.52 0.58 7.08

MUSCLE 49.39 6.01 12.97 10.42 3.31 0.34 0.73 0.64 10.48

MUSCLE profile-profile 57.33 11.53 18.23 22.06 3.86 0.40 1.28 1.20 14.49

ProbCons 41.46 3.20 7.91 5.60 4.78 0.35* 1.70 1.09 8.22

T-Coffee 39.93 4.62 6.69 4.50 4.73 0.35* 1.60 1.09 7.90

T-Coffee profile-profile 64.15 42.50 12.03 17.50 8.48 0.45 2.15 2.22 18.69

Families are sorted by the average sequence identity (see Table 4). Mean = mean over averages for eight families.
doi:10.1371/journal.pone.0057731.t008

Table 9. Average shift error in pairwise alignments assigned to the same subgroup within the BAliBASE reference set 7.

ion ptga 7tm Nat acr msl dtd photo mean

AlignMeP 12.35 0.79 16.19 1.45* 0.16* 0.72 0.62 0.18 4.06

AlignMePS 6.69 0.73 2.38 1.35 0.16 0.46* 0.58* 0.20* 1.57

AlignMePST 5.57 0.65 8.44 1.45 0.16 0.44 1.09 0.16 2.24

MSAProbs 21.91 2.97 3.90 1.85 0.19 0.70 1.25 0.48 4.16

HHalign 6.03 3.14 8.56 2.37 1.32 1.94 2.66 0.29 3.29

HMAP 17.91 2.03 2.93 1.40 0.20 0.55* 3.96 0.26 3.66

MUSCLE 17.67 5.73 9.13 3.56 0.19 0.63 0.99 0.37 4.78

MUSCLE profile-profile 42.37 8.06 15.17 10.81 0.23 1.31 2.36 1.01 10.16

ProbCons 23.82 3.98 4.40 2.44 0.22 1.01 1.55 0.65 4.76

T-Coffee 19.90 1.98 3.42 2.23 0.21 0.58 1.08 0.56 3.74

T-Coffee profile-profile 23.86 3.11 3.62 2.66 0.22 0.79 1.13 0.62 4.50

Families are sorted by the average sequence identity (see Table 5). Mean = mean over averages for eight families.
doi:10.1371/journal.pone.0057731.t009
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the HOMEP2 alignments is increased significantly by including

transmembrane profiles (Table 2), whereas in the predicted

transmembrane regions of the BAliBASE alignments there were

fewer correctly aligned positions than with, e.g. T-Coffee (Table 7).

Again, this may reflect conflicts between the secondary structure

and transmembrane predictions, which might be addressed in

future by adjusting the procedure so that secondary structure

information is used only in regions not predicted to be in the

membrane. Unfortunately, we do not yet have sufficient data at

low sequence identities to test this hypothesis more thoroughly and

must await the availability of larger reference sets.

Of the other available methods tested, HMAP alignments were

most frequently ranked towards the top

(Tables 1,2,3,4,5,6,7,8,9,10), and T-Coffee and MSAProbs align-

ments were frequently very accurate, particularly in the trans-

membrane regions of the BAliBASE set (Table 7). Recently,

MSAProbs and ProbCons were tested on this same BAliBASE

reference 7 set [27]; however, in that study, they were assessed for

their ability to construct MSAs rather than pair-wise alignments,

which are the focus here. It should also be reiterated that when

testing the MSA methods on BAliBASE, we did not construct a

single MSA containing only the BAliBASE sequences, but rather,

for each pair of sequences, we aligned all homologues of those

sequences identified by PSI-BLAST, in order to make the results

comparable to those of AlignMe, HHalign and HMAP (see

Section 1.8). A consequence of this approach was that TM-Coffee,

a slower method also shown to perform well for MSA of

BAliBASE set 7 [27], was too computationally expensive to test

in the current study.

The profile-to-profile alignments strategy used with MUSCLE

and T-Coffee typically resulted in fewer correctly-aligned positions

and larger shifts than the other methods tested

(Tables 1,2,3,4,5,6,7,8,9,10). HHalign alignments for the BAli-

BASE set also had surprisingly low fractions of correctly-aligned

positions (Tables 4,5,6,7), although the shift errors in the

alignments for this method were among the smallest

(Tables 8,9,10) and the scores on the low sequence-identity ion

family were also consistently high-ranking (Tables 4,5,6,8,9,10).

This low performance of the profile-profile methods may reflect

greater deviations in the two profiles than in the sequences

themselves making them more difficult to align. Since the selection

of sequence homologues appears to be an important parameter

[30], in future work we plan to analyze the influence of the

database search parameters on the accuracy of the different

alignment methods, and to test programs such as SHRIMP [70],

HMMER3 [71], and HHblits [72] instead of PSI-BLAST.

This study focuses on a-helical membrane protein sequences, so

that we obtain gap penalties that are optimal for long helices and

are not biased by the inclusion of short b-stranded regions [30].

Optimization against b-barrel proteins is likely to lead to different

gap penalty sets, and may result in methods that are particularly

useful for that membrane protein architecture.

A concern about the current study is the fact that no structural

informational was available to aid with the alignments when the

BAliBASE reference set 7 was constructed, and therefore it is

possible that these alignments contain errors whose effect we

cannot yet know [63]. Nevertheless, the relatively consistent

ranking of the different methods on both the BAliBASE and

HOMEP2 sets, i.e., with AlignMePS, MSAProbs and HMAP

frequently high-ranking, and the profile-profile methods ranked

towards the bottom, suggests that our findings are reasonably

robust.

As the size of the database of membrane protein structures

grows, further assessment of the various methods will be useful.

Nevertheless, the results presented here suggest that there is

potential for using the specific properties of membrane proteins for

training and design in a way that aids the alignment of their

sequences.
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File S1 Contains Figures S1 through S6 and Tables S1 and S2.

Figure S1 Clustering principle used for generation of the

HOMEP2 data set. Figure S2 Correlations between alignment

accuracy measures. Figure S3 Comparison of alignment accuracy

when using hydrophobicity scales as input descriptors in AlignMe.

Figure S4 Profiles of the predicted membrane propensity from

the three different transmembrane helix prediction methods tested

for AlignMe. Figure S5 Accuracy of HOMEP2 alignments

generated by different methods. Figure S6 Accuracy of homology

models built from HOMEP2 alignments generated by different

methods. Table S1 Proteins in the HOMEP2 data set, listed by

family Table S2 Sequence identities between pairs of proteins in

the same HOMEP2 family, based on their SKA structural

alignments.

(DOCX)

Table 10. Average shift error in pairwise alignments assigned to different subgroups within the BAliBASE reference set 7.

ion ptga Nat 7tm dtd photo acr msl mean

AlignMeP 42.41 59.90 58.04 52.40 10.38 0.35 1.90 0.43 28.23

AlignMePS 44.56 4.99 2.67 3.87 1.78 0.40 0.48 0.35 7.39

AlignMePST 19.71 9.10 3.60 12.34 3.61 0.35 0.65 0.50 6.23

MSAProbs 47.73 8.35 2.53 5.37 4.47 1.62 0.47 1.01 8.94

HHalign 22.90 11.73 5.29 10.12 6.60 1.01 1.86 1.56 7.63

HMAP 48.28 9.43 2.06 4.87 7.01 0.60 0.41 0.60* 9.16

MUSCLE 71.94 18.63 6.49 10.61 3.45 0.83 0.48 0.65 14.13

MUSCLE profile-profile 67.96 26.17 11.67 23.11 3.95 1.36 0.55 1.05 16.98

ProbCons 54.01 10.98 3.35 5.81 4.97 2.01 0.46 1.20 10.35

T-Coffee 34.91 5.23 4.90 4.32 4.05 1.67 0.44 0.75 7.03

T-Coffee profile-profile 51.36 9.48 5.01 4.62 4.95 1.90 0.47 1.46 9.91

Families are sorted by the average sequence identity (see Table 6). Mean = mean over averages for eight families.
doi:10.1371/journal.pone.0057731.t010
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53. Tusnády GE, Dosztányi Z, Simon I (2004) Transmembrane proteins in the

Protein Data Bank: identification and classification. Bioinformatics 20: 2964–

2972.
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