6 research outputs found

    Effect of vinylpyrrolidone polymers on the solubility and supersaturation of drugs; a study using the Cheqsol method

    Get PDF
    The development of methods to increase the bioavailability of drugs is of great interest, especially for those which are poorly soluble or permeable. One of the strategies to enhance the solubility (which in turn has the potential of increase bioavailability) of drugs is the use of additives in the formulation process, so that the drug can stay supersaturated in biological fluids for a period of time long enough to allow absorption. The use of polymers as pharmaceutical excipients in order to stabilize the supersaturation of drugs is common practice. In this work, the ability of different polymers of vinylpyrrolidone (K-12, K-17, K-25, K-29/32, K-90) and a copolymer of vinylpyrrolidone and vinylacetate (S-630) have been tested for their impact on the supersaturation of drugs. Sixteen drugs of different chemical nature have been selected, and analyzed using the Cheqsol method. The results of the drug alone, and of physical mixtures with the different polymers at several polymer:drug ratios have been compared in terms of supersaturation extent and duration. It has been observed that acidic compounds displayed enhanced solubility in different ways: sometimes the supersaturated state of the drug is maintained for a long time, due to the precipitation of an amorphous solid, as determined by X-ray diffraction studies; on other occasions supersaturation increases but only for a short time, compared to the drug alone, and then the drug precipitates to a crystalline form. Only a few basic drugs displayed enhanced solubility in the presence of PVP polymers, in contrast to acidic compounds

    On-line solvent exchange system: automation from extraction to analysis

    Full text link
    Removal of organic solvent from sample extracts is required before analysis by reversed phase HPLC to preserve chromatographic performance and allow for bigger injection volumes, boosting sensitivity. Herein, an automated on-line extraction evaporation procedure is integrated with HPLC analysis. The evaporation occurs inside a 200â€ŻÎŒm microfluidic channel confined by a vapor permeable membrane. A feedback control algorithm regulates evaporation rate keeping the output flow rate constant. The evaporation process across this membrane was firstly characterized with water/solvent mixtures showing organic solvent removal capabilities. This system allowed continuous methanol, ethanol and acetonitrile removal from samples containing up to 80% organic solvent. An evaporative injection procedure was developed demonstrating the use of the device for fully integrated extract reconstitution coupled to HPLC analysis, applied to analysis of the antibiotic chloramphenicol in milk samples. Sample reconstitution and collection was performed in less than 10 min and can be executed simultaneously to HPLC analysis of the previous sample in a routine workflow, thus having minimal impact on the total sample analysis time when run in a sequence

    Evaporative membrane modulation for comprehensive two-dimensional liquid chromatography

    Full text link
    An evaporative membrane modulator was developed, built and evaluated to avoid loss of performance in the second dimension when coupling two-dimensional liquid chromatography systems. The automated interface reduces the volume after 1D elution on-line by a pre-determined factor, regardless of the separation gradient. This volume reduction ensures that the injection volume in the 2D is appropriate for the second column, avoiding the detrimental effects of overloading. In addition, the fraction solvent composition is constant over the length of the separation increasing reproducibility of 2D separations. The evaporative membrane modulator was demonstrated with a 10-fold reduction, reducing the injection volume from 50 to 5 ΌL. A consequence of the EMM device is a reduction in the capacity of the first dimension, which is decreased by a factor of 2.4, but the peak width at half maximum was reduced by up to 22% in the second dimension. When band broadening is considered, the corrected peak capacity with the modulator was only 10% lower than that without the modulator, but with a gain in peak height of 2-3, and a decrease in retention time between subsequent peak-slices reduced from 4s to be negligible. This improves peak shape and shows potential to facilitate peak identification and quantification in more complex applications

    Effect of vinylpyrrolidone polymers on the solubility and supersaturation of drugs; a study using the Cheqsol method

    No full text
    The development of methods to increase the bioavailability of drugs is of great interest, especially for those which are poorly soluble or permeable. One of the strategies to enhance the solubility (which in turn has the potential of increase bioavailability) of drugs is the use of additives in the formulation process, so that the drug can stay supersaturated in biological fluids for a period of time long enough to allow absorption. The use of polymers as pharmaceutical excipients in order to stabilize the supersaturation of drugs is common practice. In this work, the ability of different polymers of vinylpyrrolidone (K-12, K-17, K-25, K-29/32, K-90) and a copolymer of vinylpyrrolidone and vinylacetate (S-630) have been tested for their impact on the supersaturation of drugs. Sixteen drugs of different chemical nature have been selected, and analyzed using the Cheqsol method. The results of the drug alone, and of physical mixtures with the different polymers at several polymer:drug ratios have been compared in terms of supersaturation extent and duration. It has been observed that acidic compounds displayed enhanced solubility in different ways: sometimes the supersaturated state of the drug is maintained for a long time, due to the precipitation of an amorphous solid, as determined by X-ray diffraction studies; on other occasions supersaturation increases but only for a short time, compared to the drug alone, and then the drug precipitates to a crystalline form. Only a few basic drugs displayed enhanced solubility in the presence of PVP polymers, in contrast to acidic compounds
    corecore