107 research outputs found

    Can tundish deskulling waste be used as a magnesium oxide source to develop magnesium phosphate cement?

    Full text link
    Ordinary Portland cement (OPC) has a significant environmental impact since approximately 0.81 kg of CO2 is generated for every kilogram produced. Thus, it is mandatory to look for sustainable alternative cements. One of the most promising materials in this sense is magnesium phosphate cement (MPC). This study evaluates the possibility of revaluing a waste obtained from the tundish deskulling (TUN) as a raw material for formulating alternative MPC. This approach aims to promote the circular economy and minimizing the environmental impact of MPC. The tundish working lining is a crucial refractory material used in continuous steel casting. An optimal cement formulation was achieved by maximizing the compressive strength (CS) at 7 days, resulting in the combination of 60 wt% of TUN and 40 wt% of KH2PO4, with a water/cement (W/C) ratio of 0.27. The physical and mechanical properties were evaluated at three different stages: after 1, 7, and 28 days of curing. Furthermore, an exhaustive physicochemical characterization was conducted to investigate the feasibility of using it as an alternative cement. This study confirms the feasibility of formulating MPC using TUN as raw material due to the main product obtained, which is K-struvite. The use of TUN implies important economic savings and enhances sustainability criteria avoiding its management in landfills

    Assembly and dynamics of the bacteriophage T4 homologous recombination machinery

    Get PDF
    Homologous recombination (HR), a process involving the physical exchange of strands between homologous or nearly homologous DNA molecules, is critical for maintaining the genetic diversity and genome stability of species. Bacteriophage T4 is one of the classic systems for studies of homologous recombination. T4 uses HR for high-frequency genetic exchanges, for homology-directed DNA repair (HDR) processes including DNA double-strand break repair, and for the initiation of DNA replication (RDR). T4 recombination proteins are expressed at high levels during T4 infection in E. coli, and share strong sequence, structural, and/or functional conservation with their counterparts in cellular organisms. Biochemical studies of T4 recombination have provided key insights on DNA strand exchange mechanisms, on the structure and function of recombination proteins, and on the coordination of recombination and DNA synthesis activities during RDR and HDR. Recent years have seen the development of detailed biochemical models for the assembly and dynamics of presynaptic filaments in the T4 recombination system, for the atomic structure of T4 UvsX recombinase, and for the roles of DNA helicases in T4 recombination. The goal of this chapter is to review these recent advances and their implications for HR and HDR mechanisms in all organisms

    Tumor surveillance by circulating microRNAs: a hypothesis

    Get PDF
    A growing body of experimental evidence supports the diagnostic relevance of circulating microRNAs in various diseases including cancer. The biological relevance of circulating microRNAs is, however, largely unknown, particularly in healthy individuals. Here, we propose a hypothesis based on the relative abundance of microRNAs with predominant tumor suppressor activity in the blood of healthy individuals. According to our hypothesis, certain sets of circulating microRNAs might function as a tumor surveillance mechanism exerting continuous inhibition on tumor formation. The microRNA-mediated tumor surveillance might complement cancer immune surveillance

    Deregulation of miRNAs in malignant pleural mesothelioma is associated with prognosis and suggests an alteration of cell metabolism

    Get PDF
    Malignant pleural mesothelioma (MPM) is an aggressive human cancer and miRNAs can play a key-role for this disease. In order to broaden the knowledge in this field, the miRNA expression was investigated in a large series of MPM to discover new pathways helpful in diagnosis, prognosis and therapy. We employed nanoString nCounter system for miRNA profiling on 105 MPM samples and 10 healthy pleura. The analysis was followed by the validation of the most significantly deregulated miRNAs by RT-qPCR in an independent sample set. We identified 63 miRNAs deregulated in a statistically significant way. MiR-185, miR-197, and miR-299 were confirmed differentially expressed, after validation study. In addition, the results of the microarray analysis corroborated previous findings concerning miR-15b-5p, miR-126-3p, and miR-145-5p. Kaplan-Meier curves were used to explore the association between miRNA expression and overall survival (OS) and identified a 2-miRNA prognostic signature (Let-7c-5p and miR-151a-5p) related to hypoxia and energy metabolism respectively. In silico analyses with DIANA-microT-CDS highlighted 5 putative targets in common between two miRNAs. With the present work we showed that the pattern of miRNAs expression is highly deregulated in MPM and that a 2-miRNA signature can be a new useful tool for prognosis in MPM

    Epigenetically silenced miR-34b/c as a novel faecal-based screening marker for colorectal cancer

    Get PDF
    BACKGROUND: MicroRNAs are tiny non-coding small endogenous RNAs that regulate gene expression by translational repression, mRNA cleavage and mRNA inhibition. The aim of this study was to investigate the hypermethylation of miR-34b/c and miR-148a in colorectal cancer, and correlate this data to clinicopathological features. We also aimed to evaluate the hypermethylation of miR-34b/c in faeces specimens as a novel non-invasive faecal-DNA-based screening marker. METHODS: The 5-aza-2'-deoxycytidine treatment and methylation-specific PCR were carried out to detect the hypermethylation of miR-34b/c and miR-148a. RESULTS: The miR-34b/c hypermethylation was found in 97.5% (79 out of 82) of primary colorectal tumours, P=0.0110. In 75% (21 out of 28) of faecal specimens we found a hypermethylation of miR-34b/c while only in 16% (2 out of 12) of high-grade dysplasia. In addition, miR-148a was found to be hypermethylated in 65% (51 out of 78) of colorectal tumour tissues with no significant correlation to clinicopathological features. However, a trend with female gender and advanced age was found, P=0.083. We also observed a trend to lower survival rate in patients with miR-148a hypermethylation with 10-year survival probability: 48 vs 65%, P=0.561. CONCLUSIONS: These findings show that aberrant hypermethylation of miR-34b/c could be an ideal class of early screening marker, whereas miR-148a could serve as a disease progression follow-up marker

    The DNA Damage Response Pathway Contributes to the Stability of Chromosome III Derivatives Lacking Efficient Replicators

    Get PDF
    In eukaryotic chromosomes, DNA replication initiates at multiple origins. Large inter-origin gaps arise when several adjacent origins fail to fire. Little is known about how cells cope with this situation. We created a derivative of Saccharomyces cerevisiae chromosome III lacking all efficient origins, the 5ORIΔ-ΔR fragment, as a model for chromosomes with large inter-origin gaps. We used this construct in a modified synthetic genetic array screen to identify genes whose products facilitate replication of long inter-origin gaps. Genes identified are enriched in components of the DNA damage and replication stress signaling pathways. Mrc1p is activated by replication stress and mediates transduction of the replication stress signal to downstream proteins; however, the response-defective mrc1AQ allele did not affect 5ORIΔ-ΔR fragment maintenance, indicating that this pathway does not contribute to its stability. Deletions of genes encoding the DNA-damage-specific mediator, Rad9p, and several components shared between the two signaling pathways preferentially destabilized the 5ORIΔ-ΔR fragment, implicating the DNA damage response pathway in its maintenance. We found unexpected differences between contributions of components of the DNA damage response pathway to maintenance of ORIΔ chromosome derivatives and their contributions to DNA repair. Of the effector kinases encoded by RAD53 and CHK1, Chk1p appears to be more important in wild-type cells for reducing chromosomal instability caused by origin depletion, while Rad53p becomes important in the absence of Chk1p. In contrast, RAD53 plays a more important role than CHK1 in cell survival and replication fork stability following treatment with DNA damaging agents and hydroxyurea. Maintenance of ORIΔ chromosomes does not depend on homologous recombination. These observations suggest that a DNA-damage-independent mechanism enhances ORIΔ chromosome stability. Thus, components of the DNA damage response pathway contribute to genome stability, not simply by detecting and responding to DNA template damage, but also by facilitating replication of large inter-origin gaps

    Cell cycle-independent phospho-regulation of Fkh2 during hyphal growth regulates Candida albicans pathogenesis.

    Get PDF
    The opportunistic human fungal pathogen, Candida albicans, undergoes morphological and transcriptional adaptation in the switch from commensalism to pathogenicity. Although previous gene-knockout studies have identified many factors involved in this transformation, it remains unclear how these factors are regulated to coordinate the switch. Investigating morphogenetic control by post-translational phosphorylation has generated important regulatory insights into this process, especially focusing on coordinated control by the cyclin-dependent kinase Cdc28. Here we have identified the Fkh2 transcription factor as a regulatory target of both Cdc28 and the cell wall biosynthesis kinase Cbk1, in a role distinct from its conserved function in cell cycle progression. In stationary phase yeast cells 2D gel electrophoresis shows that there is a diverse pool of Fkh2 phospho-isoforms. For a short window on hyphal induction, far before START in the cell cycle, the phosphorylation profile is transformed before reverting to the yeast profile. This transformation does not occur when stationary phase cells are reinoculated into fresh medium supporting yeast growth. Mass spectrometry and mutational analyses identified residues phosphorylated by Cdc28 and Cbk1. Substitution of these residues with non-phosphorylatable alanine altered the yeast phosphorylation profile and abrogated the characteristic transformation to the hyphal profile. Transcript profiling of the phosphorylation site mutant revealed that the hyphal phosphorylation profile is required for the expression of genes involved in pathogenesis, host interaction and biofilm formation. We confirmed that these changes in gene expression resulted in corresponding defects in pathogenic processes. Furthermore, we identified that Fkh2 interacts with the chromatin modifier Pob3 in a phosphorylation-dependent manner, thereby providing a possible mechanism by which the phosphorylation of Fkh2 regulates its specificity. Thus, we have discovered a novel cell cycle-independent phospho-regulatory event that subverts a key component of the cell cycle machinery to a role in the switch from commensalism to pathogenicity

    FACT, the Bur Kinase Pathway, and the Histone Co-Repressor HirC Have Overlapping Nucleosome-Related Roles in Yeast Transcription Elongation

    Get PDF
    Gene transcription is constrained by the nucleosomal nature of chromosomal DNA. This nucleosomal barrier is modulated by FACT, a conserved histone-binding heterodimer. FACT mediates transcription-linked nucleosome disassembly and also nucleosome reassembly in the wake of the RNA polymerase II transcription complex, and in this way maintains the repression of ‘cryptic’ promoters found within some genes. Here we focus on a novel mutant version of the yeast FACT subunit Spt16 that supplies essential Spt16 activities but impairs transcription-linked nucleosome reassembly in dominant fashion. This Spt16 mutant protein also has genetic effects that are recessive, which we used to show that certain Spt16 activities collaborate with histone acetylation and the activities of a Bur-kinase/Spt4–Spt5/Paf1C pathway that facilitate transcription elongation. These collaborating activities were opposed by the actions of Rpd3S, a histone deacetylase that restores a repressive chromatin environment in a transcription-linked manner. Spt16 activity paralleling that of HirC, a co-repressor of histone gene expression, was also found to be opposed by Rpd3S. Our findings suggest that Spt16, the Bur/Spt4–Spt5/Paf1C pathway, and normal histone abundance and/or stoichiometry, in mutually cooperative fashion, facilitate nucleosome disassembly during transcription elongation. The recessive nature of these effects of the mutant Spt16 protein on transcription-linked nucleosome disassembly, contrasted to its dominant negative effect on transcription-linked nucleosome reassembly, indicate that mutant FACT harbouring the mutant Spt16 protein competes poorly with normal FACT at the stage of transcription-linked nucleosome disassembly, but effectively with normal FACT for transcription-linked nucleosome reassembly. This functional difference is consistent with the idea that FACT association with the transcription elongation complex depends on nucleosome disassembly, and that the same FACT molecule that associates with an elongation complex through nucleosome disassembly is retained for reassembly of the same nucleosome
    corecore