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Abstract:  Structural studies of peri-interactions with dimethylamino groups in 
naphthalene systems indicate that the N-phenylcarboxamide group has a through-space 
electron attracting power closer to that of a carboxylic ester than a N,N-
dialkylcarboxamide, while 2-nitroalkenyl groups have a lower through-space electron 
attracting power. However, addition of a benzoyl group to the 2-position of the 
nitroethenyl group leads to cyclisation to give a zwitterion, in which the carbanion is 
stabilised by full conjugation with the nitro group and partial conjugation with the 
carbonyl group.  An interesting case where a steric interaction overrides an 
electrophile/nucleophile attraction is also described. The limitations to the interpretation 
of short contact distances from crystallographic measurements are discussed. 
 
 
Introduction. 
 

Interactions between molecules underpin many chemical processes both in 

biological systems and in materials chemistry, and include effects such as hydrogen 

bonding, charge transfer interactions and  π-π stacking. We have been interested in 

attractive interactions between electrophilic and nucleophilic groups. When pairs of such 

groups are forced close together, their interaction reveals the through-space electron 

attracting power of the electrophilic group, and may model a stage in the chemical 

reaction between the two groups. These studies have built on pioneering work in which 

incipient bond formation was recognised in medium ring compounds by Bürgi, Dunitz 

and Schefter1  and the principles of structure correlation developed and applied.2,3  The X-

ray crystal structures of naphthalenes 1 bearing a dimethylamino group and an electron 

deficient alkene or carbonyl substituent in the peri-positions show that the pyramidal 
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dimethylamino group is oriented so that its lone pair lies in the space between the peri 

groups and the electrophilic group presents a face to the dimethylamino group,4-7 as 

originally demonstrated by Dunitz et al.4 The 1,5 Me2N---sp2C  separations decreases as 

the electron deficient group is changed from a N,N-dialkylamide e.g. 2 or 3 (2.764 and 

2.698  Ǻ),8 to a methyl ester 4 ( 2.594 Ǻ),4  to a methyl ketone 5 ( 2.557 Ǻ)4 to alkenes      

-CH=C(CN)CO2Et 6 (2.531 Ǻ)7 and -CH=C(CN)2  7 (2.413 Ǻ),5 and culminates in almost 

complete bond formation in the zwitterionic structure 85 where this separation is only 

1.651(3)  Ǻ (Table 1).  In contrast, when the dimethylamino group is replaced by the 

much less nucleophilic methoxy group, the MeO---sp2C separations vary over a much 

smaller range (2.55 – 2.62 Ǻ), and any trend may be obscured by molecular distortions 

due to crystal packing.  This led us to use the much more sensitive Me2N---sp2C 

separations to rank the unsaturated groups in an order of through space accepting ability 

(Table 1).    Other peri interactions in naphthalene systems have been described, e.g. 

between  electron-rich groups and alkynes12  or nitriles13   and  between dimethylamino 

groups and selenium halides14 or  silicon centred groups.15  Of particular note is the use of 

the peri arrangement to force hydrogen bonding to an amide N atom’s lone pair  as  a 

model for amide cleavage by cysteine proteases,16 as well as studies on proton sponges17 

including their dynamics18 and the use of peri-naphthalenes as chiral auxiliaries.8  Akiba 

has used 1,8,9-trisubstituted anthracenes to extend studies to  interactions of two methoxy 

groups with a carbocation centre,19 and interactions of two dimethylamino groups or two 

methoxy groups with a boron centre, including a measurement of the electron density 

distribution and topology for the latter case.19,20 Recently, Kirby has shown how the 

interaction between an amino and a carbonyl group in the solid state is promoted by 

hydrogen bonding to the carbonyl oxygen atom, 21 Furthermore, he has studied this  
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Table 1:  Me2N---sp2C Separations in Peri-Naphthalenes 1 

X Compound Me2N-----X  (Ǻ) MeO----X (Ǻ) in 
corresponding methoxy-
naphthalene.  

CON(iPr)2 2 2.764(3)8 2.623(2)8 

CH=CHBr  2.717(5)-2.758(2)9       - 

CONMe2 3 2.698(3)8              2.597(5)4 

CH=C(COPh)2  2.679(2)5  - 

CO2H  2.606(5)4 2.559(4)4 

CO2Me 4 2.594(4)4        2.588(3)10,a 

COMe 5 2.557(3)4              2.606(9)4 

CH=C(CN)CO2Et 6 2.531(2)7  - 

CHO  2.489(5)9        2.628(4)11,b & 2.644(4)11,c  

CH=C(CN)2 7 2.413(2)5                  2.611(1)6 

CH=C((C=O)O)CMe2 8 1.651(3)5 2.550(2)6 

 

a For methyl 5,8-dimethoxynapthoate; b  for 4,8-dimethoxy-5-(p-tosyloxy)-1-naphthaldehyde, c for 8-

methoxy- 5-(p-tosyloxy)-1-naphthaldehyde 
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interaction type using an alicyclic system in which a high degree of bond formation 

between the groups is favoured by formation of an azaadamantane system.21 

 

Determining the nature of the interaction between a particular pair of functional 

groups is not necessarily straightforward. However, as a rough guide, we proposed that 

the Me2N---sp2C interactions are attractive in nature if they are less than the 

corresponding MeO---sp2C distance plus 0.15 Ǻ.6 The latter figure is the allowance for 

the larger size of the N atom over the O atom, and is estimated from the Me2N---NMe2 

and MeO---OMe distances in peri-naphthalene derivatives containing fragments 9 and 

10. Thus, for the CONMe2 group, the Me2N---sp2C distance is just 0.05 Ǻ less than 

d(MeO---sp2C) + 0.15 Ǻ, and this interaction is interpreted as just having a very weak 

attractive component due to incipient addition to the carbonyl group, and that the 

separation is mainly determined by steric factors.  In contrast, for the CH=C(CN)2 group 

the Me2N---sp2C distance is 0.35 Ǻ less than d(MeO---sp2C) + 0.15 Ǻ, and this indicates 

a more attractive interaction.   The rapidly developing field of charge density 

determinations from accurate X-ray diffraction data should provide rather more insight 

into incipient bond formation than this rather superficial approach.  Indeed, charge 

densities of the amide 322 and the dicyanoethene 723  show (3, -1) critical points in the 

charge density between the interacting groups with electron densities at those points of 

0.11(1) and 0.19(2) e Ǻ-3 respectively.    

 

To expand the range of groups  in this series we decided to investigate two areas. 

First, to examine the interaction with a N-phenylcarboxamide group, where the 

delocalization of the nitrogen atom’s lone pair into the carbonyl group is moderated by 
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conjugation with a phenyl group, by study of the molecular structures of compounds 11-

13.  Secondly, to examine interactions with  a β-nitroethenyl group,  since nitro-activated 

alkenes were not represented in the series so far, and to examine the effect of adding a 

further terminal substituent. 
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Discussion. 

 

N-Phenylnaphthamides 11 and 12, and N,N’-diphenyl-naphthoylurea 13. 

 The N-phenylnaphthamides 11 and 12 containing peri methoxy or dimethylamino 

groups were prepared by peri-lithiation of the 1-methoxy- and 1-

dimethylaminonaphthalenes followed by reaction with phenyl isocyanate. A further 

compound 13 was isolated from the latter reaction, arising by addition of phenyl 

isocyanate to the first formed adduct to give an acyl urea group. This compound was 

included in the study because of the different electronic character of the amide carbonyl 

group presented to the dimethylamino group; this amide nitrogen atom shares its lone pair 

with a second carbonyl group.   Molecular structures were measured by X-ray diffraction 

at  low temperatures (mostly 100 – 120 K).  Results are shown in Figures 1-3, and 

relevant molecular geometry are presented in Table 2.  Three polymorphs of the methoxy 

derivative 11 were measured, two triclinic (11A, measured at 100 K, and 11C, measured 

at 150 K) and one monoclinic (11B, measured at 100 K). Each contained two 
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independent molecules, and for 11C one molecule was disordered between two 

orientations (85:15).  

 

Molecules 11-13 show the distortion pattern characteristic of such compounds, in 

which both substituents are splayed in the same direction, with the carbonyl containing 

group splayed outwards.  The patterns of angles α - ε are similar for the three compounds 

and are comparable to the carbonyl derivatives discussed previously, in particular they 

compare closest to the carboxylic acid and ester derivatives.1,3  In the N-

phenylnaphthamides 11 and 12 the phenyl groups lie syn to the carbonyl and the angles 

between the amide group and phenyl ring planes are in the range 23.6(3)-37.43(15)o for 

11 and 19.94(6)° for 12, hence the amide N atom’s lone pair can conjugate with the 

phenyl ring’s π-system (Fig 1). Thus, the amide C-N bond lengths (11: 1.352(2) Å 

(average over six molecules) and 12: 1.3602(14) Ǻ) are  0.02-0.03 Ǻ longer than that for 

a N-methylamide derivative (1.329(10) Ǻ for 19 measurements at T ≤ 150 K).24  The 

C(phenyl)-N bond lengths are 1.424(2) and 1.4145(14) Ǻ for 11 and 12, similar to 

acetanilide25 (1.417 Ǻ, angle between amide and phenyl planes: 16.1o). 

 

The Me2N----C distance in 12 is 2.6049(15) Å which is similar to the 

corresponding separation for peri-interaction with a carboxylic ester or carboxylic acid, 

but considerably shorter than for the corresponding N,N-dimethylamide 3 (2.698(2) Å). 

The MeO----C distances in N-phenylnaphthamide 11 (2.574(2) – 2.672(2) Å) have an 

average value of 2.637(2) Å which is shorter than the Me2N----C distance for 12 and the 

value of the parameter [d(MeO----X) + 0.15 –d(Me2N----X)] for the N-
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phenylcarboxamide group is 0.18 Å.  This suggests that the Me2N----sp2C interaction in 

12 involves a significant attractive component, and the value for this parameter is a little   

 

                                                                                                 

                             

Figure 1.  Views of N-phenylcarboxamides  11 (above) and 12 (below). 
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larger than that of carboxylic ester 4 (0.14 Å), but much larger than that for a N,N-

dimethylcarboxamide (0.05 Å), consistent with the reduced electron donation from the N 

atom into the carbonyl group.  Further evidence of an attractive interaction in 12 comes 

from the orientation of the dimethylamino group, so that the theoretical axis of the N 

atom’s lone pair axis lies at 15.1° to the vector between peri nitrogen and carbonyl 

             

                        

                
Figure 2. Hydrogen bonding of molecules in chains in polymorph 11A and 12 
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carbon atoms.  The crystal packings in 11 and 12 involve hydrogen bonding linking the 

amide groupings into chains (Fig. 2), and for all polymorphs of 11 the hydrogen bonding 

links the two independent molecules in a A-B-A-B fashion. 

 
Table 2: Selected geometric data for compounds 11 – 13 

Z
O

C2 C1

d

δ ε
γ

βα

N Z = OMe (11), NMe2 (12, 13);  Y = H (11, 12), Y = CONHPh (13)

ΔC: deviation of C11 from the plane of its substituents towards 
the peri substituent.

T1 and T2: torsion angles of O-Me (11) or N-Me bonds (12 & 13) 
with the C1-C2 naphthyl bond.

C11

Ph

Y

 
 

 D α β γ δ ε ΔC T1 T2 

11A 2.6715(17) 124.23(12) 114.89(11) 123.93(12) 122.68(11) 116.42(12) 0.0332(14) 0 . 4 ( 2 )   

 2.6708(18) 123.90(12) 115.10(11) 123.68(12) 122.68(11) 116.70(11) 0.0342(13) 1 . 5 ( 2 )   

11B 2.6540(16) 124.18(12) 114.68(11) 123.80(11) 123.24(11) 116.04(11) 0.0414(13) 1.63(18)  

 2.6588(15) 124.07(12) 114.93(11) 124.21(11) 123.99(11) 115.63(11) 0.0401(14) 0.30(18)  

11C 2.574(2) 124.4(2) 114.26(18) 123.93(18) 123.04(17) 117.2(2) 0.032(2) 8 . 2 ( 3 )   

 2.590(3) 123.7(2) 114.2(2) 123.4(2) 124.4(2) 115.7(2) 0.047(3) 8 . 8 ( 5 )   

12 2.6049(15) 122.95(11) 117.06(10) 123.36(10) 122.42(10) 117.16(10) 0.0555(12) 49.18(16) -80.21(14) 

13 2.6422(17) 123.60(14) 116.89(12) 123.09(12) 123.16(12) 116.56(12) 0.0502(15) 27.22(19) -98.56(16) 
 

The structure of molecule 13 contains some very interesting features (Figure 3 

and 4).  There is a hydrogen bond within the acyl urea grouping linking the terminal 

phenylamido group with the carbonyl group bonded to the naphthalene ring.  The H----O 

distance is 1.901(19) Ǻ, the N-H bond is 0.91(2) Ǻ and the angles at the H and O atoms 
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are 137.6(17)o and 99.5(6)o respectively. This completes a nearly planar six-membered 

ring system, which lies at 76.74(4)° to the naphthalene ring’s best plane (Figure 3). In 

fact, five atoms of this hydrogen bonded ring lie close to a plane (rms deviation 0.015 Ǻ) 

from which the hydrogen bonded oxygen atom is slightly displaced (by 0.212(12) Ǻ) in a 

direction away from the peri dimethylamino group. The two phenyl rings lie at 85.36(4)° 

(ring A) and 13.21(8)° (ring B) to the best plane through the six-membered urea ring 

system.  Thus, the terminal nitrogen, N3, is involved in conjugation with phenyl ring B, 

but the N atom located between two carbonyl groups, N2, is not conjugated with ring A.  
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Ring A 

Ring B 

 

 

Figure 3.  View of the acyl urea 13 showing the internal hydrogen bonding. 

 

This is consistent with the longer N-C(Ar) length to ring A than to ring B (1.4538(16) and 

1.4205(17) Ǻ respectively). The three N-C(carbonyl) bond lengths follow the expected 
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pattern: the two bonds to N2  (N2-C11: 1.3890(16) and N2-C20: 1.4332(17) Ǻ) are 

longer than the bond to N3 (N3-C20: 1.3530(17) Ǻ). For the two amide bonds from N2, 

the bond to C20 is considerably longer (by  0.044 Ǻ) since this carbonyl C atom is 

already receiving electron density from N3, being part of a urea grouping. The 1H  NMR 

solution spectrum shows a very deshielded amide H atom (δH: 11.60), and  five shielded 

H atoms for phenyl ring A (δH: 6.84) which lies above the naphthalene ring system.   The 

hydrogen bonded six-membered ring has been observed in many other acyl ureas 

systems, e.g. 14,26 and included in rotaxanes,27 biologically active materials like 

glimepiride28 and as features within large ring systems.29 Although no structures of acyl 

ureas with a N-aryl group between the two carbonyls are reported, the closely related  

triphenylbiuret 1530and its tri(2-tolyl) analogue31 have their central aryl ring at 70-71o to 

the plane of the hydrogen bonded ring.  
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    The Me2N---C separation for the acyl urea 13 is 2.6422(17) Å which is 0.037(3) Ǻ 

longer than for the N-phenylcarboxamide 12, suggesting a weaker interaction. We have 

no methoxy analogue for the acyl urea,  but since the MeO----C separations are fairly 

insensitive to the nature of the electrophilic group, the methoxynaphthamide 11 can be 

used to estimate a value of 0.09 Å for  the parameter [d(MeO----X) + 0.15 – d(Me2N----

X)] for the acyl urea grouping.  Thus the Me2N----sp2C interaction in this compound also 

involves a small attractive component, but smaller than that observed in the N-phenyl 
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naphthamide 12.  Furthermore, in acyl urea 13 the torsion angles between the N-Me 

bonds and the C1-C2 bond of the naphthalene ring are 27.22(19) and –98.56(16)°, hence 

the theoretical axis of the nitrogen lone pair lies at  24.9o to the N1----C11 vector (cf. 

15.1o for 12).   These results are rather surprising considering the electronic structure of 

the carbonyl group under attack. Thus, compared to the N-phenylnaphthamide 12, the 

peri carbonyl of the acyl urea might be expected to be more electron deficient, and thus 

make a stronger interaction with the dimethylamino group: N2 shares its lone pair 

electron density with a second carbonyl group, while in 12 the only alternative 

conjugating group is an in-plane phenyl group. This is reflected in the longer N-

C(carbonyl) bond for 13 compared to 12: N2-C11, 1.3890(16) Ǻ vs 1.3602(14) Ǻ.  

However, in this case there is another factor to consider.  

 

The phenyl ring A lies on the same side of the naphthalene plane as the 

dimethylamino methyl group (C19) and there is a short contact between an ortho 

hydrogen (H13) of the phenyl ring and a methyl hydrogen. The H----H separation is only 

ca. 2.28 Ǻ, which corresponds to van der Waals contact.  Indeed, it is a repulsion between 

the phenyl and methyl groups which has led to the longer N----sp2C distance in 13 

compared to that found in 12, and this compound does not provide an adequate model for 

assessing the interaction of a dimethylamino group with this particular peri carbonyl 

group.  Additionally, this steric effect also restricts the orientation of the dimethylamino 

group such that the N atom’s lone pair cannot be directed towards the peri group.  In an 

attempt to ease the repulsion, the peri groups are displaced to opposite sides of the 

naphthalene plane.  The sizes of the displacements from the naphthalene ring’s best plane 

are 0.3683(16) Ǻ for the dimethylamino N atom and -0.1919(17) Ǻ for the carbonyl C 
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atom, which are larger than the corresponding displacements in N-phenylnaphthamide 12 

(0.2389(15) and -0.1529(15) for N1 and C11 respectively).  The 1H and 13C NMR 

solution spectra of 13 show two distinct signals for the N-methyl groups (δH: 2.57, δC: 

49.9 and δH: 2.98, δC: 43.7) due to the greater steric barrier for rotation of a peri group 

compared to the amide 12 which shows just one signal (δH: 2.61, δC: 46.0). The methyl 

group involved in the steric interaction with the  phenyl group is likely to have the more 

deshielded hydrogens. In solution it is much more difficult for the peri urea group of 13 

to rotate about its bond to the naphthalene skeleton than for the amide group in  12.   

                           

Figure 4.  View of 13 showing the steric interaction between hydrogen atoms H19a and 

H13 and the displacement of the peri-substituents from  the naphthalene plane. 
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In summary, the structural measurements suggest that the N-phenylcarboxamide 

group  has a through space electron attracting power significantly greater than a N,N-

dialkylcarboxamide. The results for acyl urea 13 provide a cautionary tale about the need 

to carefully analyse a structure for all interactions, both steric and electronic.  All three 

structures show small pyramidalisations of the carbonyl carbon towards the peri 

substituent: 0.029(2) Ǻ in 11, 0.0555(12) Ǻ in 12 and 0.0502(15) Ǻ in 13, the larger 

values for interaction with nitrogen, and the largest effect for the shorter contact to 

nitrogen. For 13 this contributes to the displacement of the carbonyl O atom out of the 

plane of the acyl urea. The Nu----C=O angles are 95.6(1)° in 11, 97.35(7)° in 12 and 

98.88(9)° in 13, similar to those in related naphthalene systems. 

 

Nitroalkenes 17 and 18, and zwitterion 22. 
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To investigate the electron-withdrawing  effect of a nitro group on the through-

space electron attracting power of an alkene bond, three 1-(β-nitroalkenyl)napththalene 

derivatives with peri-dimethylamino groups were selected for study. The first one, 17, 

contained the 2-nitroethenyl group and the second one, 18,  contained an additional 

methyl group at the terminus of the alkene. Although electronically very similar to 17 the 

terminal methyl group is included to modify the orientation of the alkene by steric 

interaction with the ortho naphthalene H atom (Figure 4). It is already known that for 

cases where the peri interaction is weak, and the electrophilic group is either an  alkene 

with a H atom cis to the naphthalene ring, e.g. 20, or an aldehyde such as 21, then the 

dominating interaction is optimisation of the conjugation of the alkene or carbonyl group 

with the naphthalene, so the double bond does not present a face clearly to the peri group. 

We wanted to be sure to include a compound where this did not happen, given its 

occurrence in the nitroethenyl derivative 20.   The third compound 19 is selected since it 

is expected to have a more electron-deficient alkene due to the combination of terminal  

nitro and benzoyl groups.  The compounds were prepared by Knoevenagel condensation 

on the aldehyde 16. It was notable that the crystals of 17 and 18 were dark orange in 

colour, but the crystals of the benzoyl nitro compound 19 were pale yellow.    Low 

temperature X-ray analysis revealed that the latter contained almost complete bond 

formation between the functional groups and had a zwitterionic structure 22.  Results are 

displayed in Figures  5-7, and selected molecular geometry in Table 3.  
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Table 3: Selected geometric data for compounds 17, 18 and 22. 

N

C2 C1

d

δ ε
γ

βα

H ΔC: deviation of C11 from the plane of its substituents 
towards the peri substituent.

T1 and T2: torsion angles of N-Me bonds with the C1-C2
aryl bond.

Τ3 torsion angle of C11-C12 bond with C7-C8 aryl bond.

C11
Me

Me

X

NO2

C7C8

C12

 
 

 
 

X D α β γ δ ε 

17 

 
 

H 2.6417(16) 123.44(12) 117.30(11) 122.95(12) 122.30(12) 118.39(12) 

18 

 
 

CH3 2.6744(17) 122.86(12) 117.47(11) 123.50(11) 121.98(12) 118.15(12) 

22 

 
 

PhC=O 1.6397(17) 128.61(13) 109.43(11) 113.54(12) 109.99(12) 131.17(12) 
 
 

 

 
 

X ΔC T1        T2 

 
 
T3    

17 

 
 

H   0.024(1)  -26.67(18) 103.13(15) 

 
 

50.52(19) 

18 

 
 

CH3 

 
 
   0.042(1) 25.95(19) -103.05(15) 

 
 

53.50(19) 

22 

 
 

PhC=O   0.370(1)  56.26(18) -65.87(18)  

 
 
50.8(2) 
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 The structures of the two molecules 17 and 18, in which the peri-alkene group 

contains only one electron attracting substituent, adopt the E configuration and have very 

similar molecular conformations. The nitro and alkene groups are almost coplanar, and 

the alkene bond makes torsion angles with the C1-C2 aromatic bond of   50.52(19)  and 

53.50(19)o and so present a face to the dimethylamino group, in contrast to the methylthio 

analogue 20. The Me2N---C=CNO2 separations of  2.6417(16) and 2.6744(17) Ǻ  place 

the β-nitroalkene group between the N-phenylcarboxamide group (N---C:  2.6049(15) Ǻ)   

and N,N-dimethylcarboxamide group (N---C: 2.698(3) Ǻ) in power of “through space” 

electron attracting ability, and similar to the C=C(COPh)2  group (N---C:  2.679(2) Ǻ). 

(We were unable to obtain suitable crystals of the 8-methoxy analogue of 17 for a direct 

comparison of their peri interactions and calculation of the parameter [d(MeO----X) + 

0.15 – d(Me2N----X)]). The dimethylamino groups in both nitroalkenes have similar 

orientations with the lone pair not well aligned with the Me2N---C vector; theoretical 

nitrogen lone pair axes lies at 27.6o (17) and 28.6o (18) to their  N1---C11 vectors.  One 

methyl group lies roughly perpendicular to the naphthalene plane. Similar orientations are 

observed in most cases with larger N---C separations, but for shorter N---C separations, 

e.g. in the esters and carboxylic acids the nitrogen lone pair approaches closer to the N---

C vector.  Compared to the N-phenylcarboxamide 12 the increased Me2N---sp2 C 

separation is achieved by larger displacements of groups out of the naphthalene plane, 

rather than by in–plane displacements. There is always the question as to how much 

crystal packing effects influence the molecular conformations observed, this being a more 

significant problem when intramolecular attractions are at their weakest. In this particular 

case, it is notable that these electronically similar molecules have taken almost the same 

conformation, but in different crystallographic environments (C2/c cf. P21/n).  The 
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increase in the alkene bond length on addition of a methyl group (cf. 17: 1.3237(19) Ǻ) v. 

18: 1.3357(19) Ǻ) is in line with the small amount of relevant data in the CSD which 

shows that nitroethenyl groups typically show short alkene bonds (1.303(35) Ǻ for 6 

structures) while additional of a  sp3 carbon atom at the α position  increases the bond 

length (1.330(5) Ǻ) for 6 room temperature measurements.)24  

         

             

Figure 5.  Views of the nitroalkenes 17 (above) and (b) 18 (below). 
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In contrast, the addition of a benzoyl group to increase the electron attracting 

power of the double bond has led to the formation of a very interesting zwitterionic 

structure 22 with a new N-C bond  1.6397(17) Ǻ long.  This is slightly shorter than in the 

zwitterion 8, where the negatively charged centre is stabilized by two coplanar lactone 

groups (1.651(3) Ǻ). The formal anionic centre at C12 has planar bonding geometry and 

is stabilized by the nitro and benzoyl substituents.  The  nitro group is better oriented for 

conjugation lying almost coplanar with the carbanionic centre: the angle between nitro 

group and this plane [N2, C11, C12, C13] is only 2.02(14)o while the carbonyl group lies 

at 40.59(8)o to this plane. The benzene ring lies at  21.18(7)o  to the carbonyl group.  

Thus, delocalisation of electron density into the nitro group leads to a shortened C12-N2 

bond of  1.3744(17) Ǻ and lengthened N=O bonds of  1.2623(15) and 1.2724(16)  Ǻ, 

compared to C-N bonds: (1.512(4) Ǻ)  and N=O bonds (1.220(1) Ǻ)  in neutral nitro 

groups.24,32 In the tetrabutylammonium salt of 2-nitropropanate 23,33 where the nitro 

group is the sole stabilizing group of the anionic charge,  the  C-N bond is shortened 

further to 1.311(7) Ǻ  and the N=O bonds are lengthened more to 1.299(5) and 1.303(5) 

Ǻ, indicating that in zwitterion 22 the nitro group is not the only contributor to the 

stabilization of the negative charge. Even in the diisopropylammonium salt of  

diphenylnitromethanide 24,34 the nitro group receives more electron density than in 

zwitterion 22 judging from the lengths of the C-N (1.322(2)  Ǻ) and  N=O bonds  

(1.302(2) and 1.308(2) Ǻ).  There is no direct analogy in the Cambridge Structural 

Database for a carbanion stabilized by just a nitro group and one carbonyl group.  In the 

potassium salt of carbanion 2535 in which three coplanar groups, nitro, cyano and a 

carboxylic ester, stabilise the negative charge, the bond lengths involving the nitro group 
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Figure 6. View of the zwitterion 22 perpendicular to the naphthalene plane.  
 

 

 
Figure 7. View of zwitterion 22 approximately perpendicular to the plane of the 

carbanionic centre. 
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are similar to those observed in the zwitterion 22, i.e. C-N 1.371(3) Ǻ  and N=O  1.246(3) 

and 1.270(3) Ǻ.  The carbonyl group in zwitterion 22 is a long way from lying planar to 

the carbanionic centre, nevertheless there is evidence of some conjugation between them.  

The carbonyl bond is lengthened a little to 1.2355(17) Ǻ compared to an unperturbed 

benzoyl carbonyl bond (1.221(1) Ǻ).24  The length of the C12-C13 bond connecting the 

carbonyl group to the carbanionic centre (1.4600(19) Ǻ) is  less than in a fully conjugated 

phenyl vinyl ketone (1.480(12) Ǻ for 8 structures at T ≤ 150 K),24 and substantially less 

than in an aliphatic α-nitroketone (1.544(6) Ǻ for six structures at T ≤ 150 K).24  In 

contrast to the zwitterion 22, for the uncoordinated enolate of acetophenone (as its 

potassium[12-crown-6] salt at 298 K),36 the C=O bond is much longer (1.291(13) Ǻ) and 

the C-C bond is considerably shortened (1.393(16) Ǻ).   The anion of nitroacetophenone 

is known in several transition metal complexes, where it binds through a carbonyl O atom 

and a nitro O atom. In the best determined structure,37  a complex with zinc, the bonds 

from the carbanionic centre are 1.365(4) Ǻ for the C-N bond (cf 1.3744 Ǻ in 22)  and 

1.385 (4) Ǻ for the C-C bond to the carbonyl group. The latter is  much shorter than in the 

zwitterion 22 where the carbonyl group lies out of the plane of the carbanionic centre, 

and there is no metal cation to enhance delocalization of charge to the oxygen atoms.  
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The five membered ring formed by cyclisation is close to planar with no torsion 

angle around the ring greater than 6o.  The new bond may not be fully formed, in part due 

to the strain in the fused five membered ring. Furthermore, the alignment between the 

new σ bond and the π system at the carbanionic centre would  permit some overlap of π 

electron density with the σ* orbital.  Is there a way of determining if the new bond 

between the peri groups is indeed fully formed? If it is not fully formed then the formal 

positive and negative charges on the zwitterion will be reduced from +1 and –1. The N-

Me bond lengths can provide a clue. The cation 26 contains a benzene ring ortho 

substituted with a trimethylammonium group and a pyramidal dimethylamino group 

oriented so that its lone pair lies in the plane of the benzene ring.38 These two groups 

provide models for the dimethylamino group in the peri-naphthalene in question in its 

fully cyclised and non cyclised forms 22 and 19. In the tetraphenylborate salt of cation 

2638 at 150 K the N-Me bonds in the trimethylammonium group lie in the range 1.503(2)-

1.504(2) Ǻ which are considerably longer than the N-Me bonds from the dimethylamino 

group  1.468(2)-1.470(2) Ǻ.  The N-Me bond lengths in the zwitterion 22 are 1.5022(18) 

and 1.5024(18) Ǻ. Although the measurement temperatures differ by 30 K,39 these results 

suggest that the bond formation in the zwitterion is at least close to completion.  It is not 

so straightforward to make a similar analysis from the stabilization of the carbanion, with 

no very close model for comparison.  

 

 The delocalization of negative charge to the oxygen atoms of the nitro and 

benzoyl groups in zwitterion 22 may be stabilized by formation of weak hydrogen bonds 

involving carbon-bound hydrogen atoms. The benzoyl oxygen makes a surprisingly short 

contact (2.235(16) Ǻ)  to H5 attached to the naphthalene ring of another molecule, with 
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the four atoms involved not far from linear.  Nitro oxygen atom O2 makes three contacts 

to hydrogens α to the cationic centre: two to methyl groups, one intermolecular (O2---

H19B, 2.481(16) Ǻ) and one intramolecular (O2---H18A, 2.548(16) Ǻ), as well as a 1,5 

intramolecular contact to the methine H (O2---H11, 2.345(14) Ǻ). Similarly O3 makes an 

intermolecular contact with a methyl group (O2---H18A, 2.457(17) Ǻ). 

 

NMR studies on 22 in DMSO-d6 show the presence of two sets of resonances in 

the ratio 3:2, both of which correspond to ring closed zwitterionic forms rather than the 

open chain alkene form.  In particular, the methine CH grouping bonded to the positively 

charged nitrogen gives signals at δC: 94.3 (major) and δC: 91.0 (minor), and the attached 

hydrogen atom has resonances at δH: 7.72 (major) and δH: 7.18 ppm. The corresponding 

atoms in the open chain compound 7  resonate at δC: 165.7 ppm and δH: 8.75.  

Furthermore, the N-methyl groups of 22 show signals at δH: 3.60 and δC: 52.9 and 53.1, 

similar to those in zwitterion 8 ( δH:  3.37 and δC: 51.8), but quite different from those of 

the uncharged dimethylamino group in 7  (δH:  2.69 and δC: 45.3). The two species 

present are likely to be rotamers arising from restricted rotation about the exocyclic C-C¯ 

bond. To interconvert while retaining the zwitterionic structure either benzoyl O1 or nitro 

O2 must rotate  past methyl group C19. In the solid state conformation there are already 

short contacts involving these groups (O1---H19C:  2.519  Ǻ;  O2---H19B:   2.548  Ǻ ). 

The 13C shifts of the carbanionic centres occur at δC: 116.5 and 116.7. In the 

pyrrolidinium salt of  nitronate 27, which has a cyano substituent to share the stabilization 

of the negative charge,  the corresponding carbon resonates at  δC: 96.7,40  while in the 

sodium salts of simple nitronates such as 28 or 29 it resonates at δC: 112.3 or 115.5.41   

The NMR spectra of zwitterion 22 in CDCl3 show two sets of resonances in a 4:1 ratio, 
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with the methine C and H resonances at lower field: δC 112.2 (major) and 104.5 (minor) 

and δH: 8.30 (major) and 7.51 (minor) than in DMSO-d6.  The difference in the shifts 

suggests that the precise degree of ring closure is affected by the solvent environment, 

with DMSO-d6  being better able to stabilize two larger charges. Further differences in 

the spectra are in line with this: thus, using the data for the major isomer in each case, the 

shifts for the two methyl groups  in DMSO-d6  (δH: 3.58 and δC: 53.4) are further 

downfield than those in  CDCl3  (δH: 3.33 and δC: 51.7) and the 1H shifts of the three 

hydrogens, ortho, meta and para to the positively charged N atom are also further 

downfield  in DMSO-d6 (8.06 d, 7.79 t, 8.02 d) than in  CDCl3 (7.82 d, 7.58 t, 7.41 d). 

The carbanionic centre in CDCl3 occurs at δC: 125.8 for the main species. 
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 On heating a solution of 22 in d6-DMSO to 90oC for 48 hours, an intramolecular 

reaction took place to give the fused azepine 30. The structure shows two methylene 

groups with carbon shifts at δC:  41.6 and 63.3, assigned to the 4- and 2-C respectively. 

The methylene hydrogens appeared as two broad signals for 4-H2 which sharpened to an 

AB system on heating to 90 oC, and a singlet for 2-H2 which correlated to the carbon shift 

at δC: 63.3.  (In contrast, in CDCl3 at 24 oC the methylene hydrogens at position 2 

appeared as an AB system which correlated to the carbon at δC 63.5,  and the other 

methylene group gave a broad signal!)  The structural assignment is further supported by 

a quaternary carbon at δC:  99.9  for 3-C and a molecular ion in the mass spectrum 
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showing loss of a nitro group.  A possible mechanism for this conversion is shown in the 

Scheme 2. Opening of the zwitterion by reversal of the Michael reaction to give the 

disubstituted naphthalene 19 is followed by hydride donation from a N-methyl group to 

the electron deficient alkene producing an iminium cation and a stabilized carbanion 

which then react together. The initial donation of hydride is facilitated by the close 

proximity of the groups and the electron-rich character of the dimethylamino group. 

Intermediate NMR spectra taken during the first hours of the rearrangement at 90 oC 

show the presence of at least one intermediate species. Although the spectra are complex, 

the singlets at  8.21 and 3.05 (broad)  may provide evidence for the alkenyl hydrogen and 

dimethylamino groups of one isomer of the open chain form 19.  
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 Finally, one should consider whether it is really valid to use single 

crystallographic measurements to characterise interactions between dimethylamino 

groups and electrophilic groups. Are our observations really accurate or not?  As we have 

pointed out before,6 crystal packing effects can provide small distortions to molecular 

structures which may compete with the effects of a weak interaction, and different 

crystalline environments in polymorphs may influence molecular geometry.   Ideally, a 

number of different polymorphs or solvates should be measured (where they exist), or 



 27

families of very closely related structures (e.g. bearing a small substituent remote from 

the groups involved in the interaction) should be measured. The existence of an 

interaction would be supported by the frequent occurrence of the feature, and the degree 

of accuracy of the method would be indicated by the spread of values for a particular 

interaction distance. We note the similarities of the interaction geometries in 17 and 18. 

Nevertheless,  in  the three polymorphs of compound 11 there are small differences in the 

MeO---C=O distances (11A: 2.672(2) & 2.671(2),  11B: 2.6540(16) & 2.6588(15),   11C:  

2.574(2) & 2.590(3) Å), even for the two which are measured at very similar 

temperatures (100 K for 11A and 11B, cf 150 K for 11C).  The lack of any pronounced 

systematic variation in the MeO---sp2C separations in a range of compounds (Table 1) 

suggests that any interaction is particularly weak, so it is perhaps not so surprising that 

this separation can be modified easily by external effects.  This variability in the 

measured MeO---sp2C separation for 11 also suggests that while comparison of the 

Me2N---sp2C separation with the MeO---sp2C separation provides a useful qualitative 

comparison the parameters deduced are subject to considerable error. While we could 

assign error bars the parameter d(MeO---sp2C) + 0.15 - d(Me2N---sp2C) derived from the 

e.s.d.s of the compared atomic separations these would be very misleading, since the 

errors arising from crystal packing effects are considerably greater.  The comparison of 

Me2N---sp2C separations in different peri-interactions is the simplest way of ranking 

interactions, though multiple measurements will provide a much sounder basis for 

identifying such trends. Thus, what we report here is more “the first indication” of 

interactions rather than the “last word”.  We may add that structures for comparison 

should be measured at low and similar temperatures to minimize the effects of thermal 

motion on the derived structural geometries. Indeed, some of the structures measured in 
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the original pioneering work4 should now be remeasured to put the data in Table 1 on a 

more closely comparable basis.  Lloyd-Jones has reported interesting initial investigations 

of estimating distances between peri-substituents using 15N,15N coupling constants across 

hydrogen bonded amino groups, but correlation of calculated coupling constants with 

N,N separation was better than for the observed data.43 

 

 

 While our measurements in most cases indicate a short contact between 

dimethylamino and electrophilic groups, they do not give direct insight into the mode of 

the interaction. Only in 22 is there clear evidence for bond formation.  It will be studies 

on the topology of the total electron density, determined either by X-ray diffraction 

measurements or by ab initio calculations or both, which provide this, as in the alkynes 

studied earlier,42 or the recent work of Akiba19 or Lyssenko.22 Ab initio calculations have 

the advantage of  treating an isolated molecule without interactions with its crystalline 

environment.  Thus, structural studies on the interactions of a carboxylic acid group or its 

anion with the α-nitrogen of a diazonium group in ortho-disubstituted aromatics44,45 have 

led Glaser to propose that the short contacts between these groups (O- - - α-N: 2.517 – 

2.621 Å)  be described as  1,3 bridging interactions of the oxygen centre with the two 

atoms attached to the α-nitrogen, since it is these two atoms which bear partial positive 

charges, while the α-nitrogen bears a partial negative charge.44 Nucleophilic addition is 

known to occur at the β-nitrogen but addition to the α-nitrogen would lead to the unstable 

1,1-diazene system.46 Orbital overlap is not the only aspect of an interaction that need to 

be considered, especially with charged groups.   Indeed, any interaction is determined by 
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a composition of different effects e.g. electrostatic, as is the process of developing a new 

bond between two groups.    

 

    It is sometimes commented that if there is an attraction between two peri-groups 

then they should displaced towards each other; in 12, 13, 17 and 18 the dimethylamino 

group is displaced towards the electrophilic group which is displaced away. However, it 

is a matter of point of reference. The peri-hydrogen atoms of naphthalene lie at a 

separation of 2.44 Å reflecting the separation of the carbon atoms (2.48 Å) to which they 

are attached, and the H---H distance  remains outside the sum of the van der Waals radii 

for two hydrogen atoms.47 The peri-disubstituted naphthalenes described here are 

somewhat different. The constraint applied by bonding to the naphthalene system acts to 

hold the groups well within the sum of their van der Waals radii, so that separations 

slightly greater than 2.5 Å are still well within the van der Waals separation, and only 

indicate that at 2.5 Å  the interaction would be repulsive. It is of note that in the 

dicyanoethenyl derivative 7 the electrophilic group is not displaced away from the 

dimethylamino group and the N---C separation is 2.413 Å. In summary, crystallographic 

studies are useful for identifying the existence of possible interactions, but these are only 

given credibility by multiple observations, and the underlying effects comprising the full 

interaction can only be more clearly unravelled by calculations and accurate electron 

density measurements. However, there is no substitute for experimental observations. 
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Experimental.   
 
General. NMR spectra were measured on a  JEOL JNM-EX270 spectrometer at 270 

MHz for 1H and  at 67.8 MHz for 13C using CDCl3 as solvent, and measured in p.p.m. 

downfield from TMS, unless otherwise stated. IR spectra were recorded on a 

PerkinElmer Spectrum RX 1 FT-IR spectrometer. Mass spectra were recorded at the 

EPSRC Mass Spectrometry Centre at Swansea University. X-Ray diffraction datasets 

were measured by the EPSRC National Crystallography Service at Southampton 

University. Chemical analysis data were obtained from Mr. T. Spencer, University of 

Nottingham.  Flash chromatography was performed on 40-63 silica gel (Merck). 

 
 

8-Methoxy- N-phenyl-1-naphthamide 11  

t-Butyllithium (1.7M solution in pentane, 20 ml, 33 mmol) was added to a stirred solution 

of 1-methoxynaphthalene (4.75 g, 30 mmol) in dry cyclohexane (60 ml) at room 

temperature, under nitrogen.  After 48 h. the precipitated lithium salt was filtered under 

nitrogen and washed with dry ether.  The lithium salt was suspended in dry ether and 

cooled to -78°C.  Phenyl isocyanate (3.57 g, 30 mmol) was added dropwise, the mixture 

allowed to warm to room temperature and stirred overnight.  The resulting brown 

solution was poured on to aqueous NH4Cl and the white solid product collected by 

vacuum filtration to yield 11 (6.0 g, 72%), m.p. 177-178°C. 1H NMR: 7.83 (1H, m, Ar-

H1), 7.59 (2H, d, J = 7.9 Hz, Ar-H2), 7.47-7.38 (5H, m, Ar-H4 + NH), 7.34 (2H, t, J = 7.8 

Hz, ArH2), 7.12 (1H, t, J = 7.3 Hz, Ar-H1), 6.85 (1H, dd, J = 6.9, 1.5 Hz, Ar-H1), 3.79 

(3H, s, OCH3); 13C NMR: 170.0 (C=O), 155.1, 138.5, 135.0, 133.3, 129.3, 129.0, 126.6, 

125.5, 125.1,  124.0, 121.4, 120.8, 119.8, 106.0 (Ar-C16), 56.1 (OCH3) ; νmax/cm-1 (KBr): 

3278, 1654, 1599, 1549, 1441, 1324, 1260, 1120, 1058, 768, 753; Found: C, 77.9; H, 5.4; 
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N, 4.9% C18H15NO2 requires: C, 78.0; H, 5.5; N, 5.1%; HRMS (EI): Found: 277.1107, 

C18H15NO2 requires: 277.1103. 

 

8-(Dimethylamino)-N-phenyl-1-naphthamide 12 and N-(8-dimethylamino-1-

naphthoyl)-N,N’-diphenylurea 13 

n-Butyllithium (1.6M solution in hexane, 26 ml, 41 mmol) was added to a stirred solution 

of the 1-dimethylaminonaphthalene (1.75 g, 10 mmol) in dry ether (35 ml) at room 

temperature under nitrogen.  After 48 h. the precipitated lithium salt was filtered under 

nitrogen and washed with dry ether.  The lithium salt was then suspended in dry ether and 

cooled to -40°C.  Phenyl isocyanate (1.67 g, 14 mmol) was added dropwise, the mixture 

was allowed to warm to room temperature and stirred overnight.  The resulting yellow 

solution was poured on to aqueous NH4Cl and extracted with CH2Cl2.  The organic 

solution was dried (MgSO4), evaporated and the crude solid material separated on silica 

gel (hexane:ether, 2:1) to yield 12 (0.68 g, 23%) and 13 (1.92 g, 46%) as white solids. 

 

8-(Dimethylamino)-N-phenyl-1-naphthamide 12 

 m.p. 193°C 1H NMR: 7.87 (1H, dd, J = 8.2 Hz, Ar-H1), 7.66 (1H, dd, J = 8.1, 1.1 Hz, Ar-

H1), 7.57-7.29 (8H, m, Ar-H8), 7.17 (1H, br.s, NH), 7.08 (1H, t, J = 7.3 Hz, Ar-H1), 2.61 

(6H, s, N(CH3)2); 13C NMR: 169.8 (C=O), 150.9, 138.9 (Ar-C2), 135.3, 134.5 (1’-C & 

Ar-C1), 129.6 (Ar-C1), 128.9 (3’-,5’-C), 127.5, 126.6, 126.1, 125.4, 124.9 (Ar-C5), 123.5 

(4’-C), 119.3 (2’-,6’-C & Ar-C1)), 46.0 (N(CH3)2); ; νmax/cm-1 (KBr): 3268, 1648, 1595, 

1545, 1495, 1438, 1316, 778, 754, 712; HRMS (EI): Found: 290.1428, C19H18N2O 

requires: 290.1419. 
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N-(8-Dimethylamino-1-naphthoyl)-N,N’-diphenylurea 13 

m.p. 142°C; 1H NMR: 11.60 (1H, br.s, NH), 7.66 (2H, d, J = 8.1 Hz, Ar-H2), 7.58 (1H, d, 

J = 7.7 Hz, Ar-H1) 7.43-7.23 (7H, m, Ar-H7), 7.12 (1H, t, J = 6.8 Hz, Ar-H1), 6.84 (5H, 

br.s, N-C6H5), 2.98 (3H, s, (NCH3), 2.57 (3H, s, NCH3); 13C NMR: 175.5 (N-C=O), 

152.3 (N2C=O), 150.6, 138.1, 137.7, 134.4, 132.1, 129.4, 129.3, 129.0,  127.6, 127.4, 

127.2, 126.4, 126.3, 124.6, 124.5, 123.8, 120.1, 117.7 (Ar-C22), 49.9 (N(CH3)2); νmax/cm-1 

(KBr): 3442, 3265, 1705, 1661, 1495, 1282, 1194, 1159, 789, 765;  Found: C, 75.9; H, 

5.7; N, 10.1%. C26H23N3O2 requires: C, 76.3; H, 5.7; N, 10.3%; HRMS (EI): Found: 

409.1798, C26H23N3O2 requires: 409.1790. 

 

E-1-(8’-Dimethylaminonaphth-1’-yl)-2-nitroethene 17. 

Nitromethane (0.3 ml, 5.50 mmol) and ethylenediamine diacetate (46 mg, 0.25 mmol) 

were added to a solution of aldehyde 1648 (0.50 g, 2.50 mmol) in dry methanol (5 ml) 

under a nitrogen atmosphere and stirred together for 36 h. at room temperature.  The 

solvent was evaporated, and the residue purified by chromatography on silica eluting with 

ether/hexane (1:2) to give 17 as an orange solid, m.p. 139-140 oC. 1H NMR:  9.31 (1H, d, 

J = 13.1 Hz, 1-H),  7.88 (1H, dd, J = 7.9, 1.5 Hz, Ar-H1),  7.62 (1H, dd, J = 8.0, 1.2 Hz, 

Ar-H1), 7.51-7.25 (4H, m, Ar-H4), 7.32 (1H, d, J = 13.1 Hz, 2-H), 2.68 (6H, s, N(CH3)2; 

13C NMR:  151.1 (8’-C), 143.9 (1-C), 133.2 (2-C), 135.7, 131.2, 129.2, 128.4, 127.0, 

126.7, 125.5, 124.9 (Ar-C8), 118.9 (7’-C), 45.3 (N(CH3)2); νmax/cm-1 (KBr): 1618, 1519, 

1503, 1341, 970, 770, 762; m/z: (EI) 242 (M+, 70), 196 ([M-NO2]+, 100), 181 (92), 166 

(55); HRMS (EI) found 242.1060, C14H14N2O2  requires 242.1055.   
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E-1-(8’-Dimethylaminonaphth-1’-yl)-2-nitropropene 18. 

Nitroethane (0.01 ml, 0.14 mmol) and ethylenediamine diacetate (5 mg, 0.03 mmol) were 

added to a solution of aldehyde 16 (0.10 g,  0.50 mmol) in dry methanol (3 ml) under a 

nitrogen atmosphere and stirred together for 48 h at room temperature.  The solvent was 

evaporated, and the residue purified by chromatography on silica eluting with 

cyclohexane/ethyl acetate (10:1) to give 18 (0.09g, 68%) as an orange solid  m.p. 68-69 

oC . 1H NMR:  8.97 (1H, s, 1-H),  7.86 (1H, d, J = 8.1 Hz, Ar-H1),  7.63 (1H, dd, J = 8.1, 

1.2 Hz, Ar-H1), 7.49-7.44 (2H, m, Ar-H2), 7.31 (1H, dd, J = 7.4, 1.3 Hz,  Ar-H1), 7.22 

(1H, m, Ar-H1), 2.63 (6H, s, N(CH3)2), 2.33 (3H, s, 3-H3);  13C NMR:  151.3 (8’-C),  

141.3 (2-C), 139.5 (1-C), 135.6, 129.8, 129.5, 127.3, 126.5, 125.3, 124.8, (Ar-C8, 1 

degeneracy), 118.9 (7’-C),  45.5 (N(CH3)2), 13.3 (3-C); νmax/cm-1: 2856, 2827, 2787, 

1653, 1516, 1455, 1426, 1387, 1321, 1025, 971, 775, 760; m/z: (EI) 256 (M+, 20), 210 

([M-NO2]+, 70), 195 (100), 182 (43), 180 (45), 168 (35), 167  (30), 166  (38), 165 (30); 

HRMS (EI) found 256.1209, C15H16N2O2  requires 256.1212.  

 

1,1-Dimethylbenzo(cd)indolium-2-benzoylnitromethide 22. 

Benzoylnitromethane ( 1.24 g, 7.50 mmol) and ethylenediamine diacetate (62 mg, 0.342 

mmol) were added to a solution of aldehyde 16 (0.68 g, 3.42 mmol) in dry methanol (10 

ml) under a nitrogen atmosphere and stirred together for 28 h. at room temperature.  The 

resulting precipitate was filtered and washed with methanol to give 22 (0.89 g, 75%) as a 

yellow powder (from methanol), m.p. 161-162 oC.  νmax/cm-1 (KBr): 1610, 1577, 1450, 

1408, 1321, 1309, 1190, 1176, 1106, 1083,  954, 812, 796,  777, 736, 710, 641;  m/z 

(APCI): 347 ([M+H]+, 100), 301 (22);   HRMS (ES)  found 347.1392 for [M+H]+, 

C21H19N2O3 requires 347.1396.   
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1H NMR (400 MHz, DMSO-d6): 3:2 mixture of isomers,  major component  8.06 (1H, d, 

J = 8  Hz,  8-H),  8.02 (1H,  d, J = 8 Hz,  6-H), 7.88 (1H, d, J = 8.2 Hz, 5-H), 7.79 (1H, t, 

7.8 Hz, 7-H),  7.72 (1H, s, 2-H),  7.61 (1H, dd, J=  8.2, 7.2 Hz,  4-H),  7.49 (2H, dm, J = 

8.2 Hz, 2’-,6’-H ), 7.32-7.40 (3H,   m,  3’-,4’-5’-H), 7.25 (1H, dd, J = 6.8, 1.2 Hz, 3-H),   

3.58 (6H, s, N(CH3)2), minor component   8.06 (1H, d, J = 8 Hz,  8-H),  8.03 (1H, d, J = 7 

Hz, 6-H), 7.92 (1H, d,  J = 8.2 Hz, 5-H), 7.78 (1H, t, J = 7.9 Hz, 7-H),  7.72 (1H, t (partly 

obscured), J = 7.7 Hz, 4-H), 7.57 (2H, m, 2’-,6’-H), 7.32-7.40 (5H, m,  3’-,4’-5’-H), 7.39 

(1H, d (obscured),  3-H),  7.18 (1H, s, 2-H),   3.58 (6H, s, N(CH3)2); 13C NMR (100 

MHz, DMSO-d6, ):  major component  188.8 (C=O), 147.4 (8a-C), 143.0 (1’C), 135.0 

(2a-C), 131.2 (5a-C), 130.1 & 130.0 (4-,4’-C), 128.7 (8b-C), 128.4 (7-C), 127.8 (2’-3’-

,5’-,6’-C), 126.8 (6-C), 124.2 (5-C), 119.0 (3-C), 116.5 (-C-NO2), 114.5 (8-C), 94.3 (2-

C), 53.4 (N-(CH3)2) ; minor component  189.2 (C=O), 147.7 (8a-C), 143.2 (1’C), 135.8 

(2a-C), 131.3 (5a-C), 130.3 & 129.2 (4-,4’-C), 128.7 (8b-C), 128.3 (7-C), 127.7 (2’-3’-

,5’-,6’-C), 126.9 (6-C), 123.9 (5-C), 118.5 (3-C), 116.7 (-C-NO2), 114.2 (8-C), 91.0 (2-

C), 52.9 (N-(CH3)2);  1H NMR (400 MHz, CDCl3): 4:1  mixture of isomers,   main 

component  8.30 (1H, s, 2-H), 7.82 (1H, d, J = 8.3 Hz, 8-H), 7.78 (1H, d, J = 8.0 Hz, 5-

H), 7.74 (2H, d, J = 8.0 Hz, 2’-,6’-H), 7.58 (1H, t, J = 7.7 Hz, 7-H), 7.46 (1H, t, J= 8.0 

Hz, 4-H), 7.45 (1H, t, J = 7.4 Hz, 4’-H), 7.41 (1H, d, J-value  obscured, 6-H), 7.37 (2H, t, 

J = 7.4 Hz, 3’-,5’-H), 7.20 (1H, br d, J = 7.0 Hz, 3-H), 3.33 (6H, s, N(CH3)2); 13C NMR  

(100 MHz, CDCl3): main component 188.9 (C=O), 148.0 (8a-C), 140.4 (1’C), 133.2 (2a-

C), 130.8 (5a-C), 127.2-130.7,  (4-,7-,8b, 2’-3’-,4’-,5’-,6’-C), 126.8 (5-C), 123.7 (-C-

NO2), 121.9 (3-C), 115.2 (6-C), 112.4 (2-C), 51.7 (N-(CH3)2). 
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Conversion of 22 to 30. 

On heating a solution of 22 for 48 h in d6-DMSO an intramolecular reaction yielded  a 

single compound whose structure is proposed as 3-benzoyl-N-methyl-3-nitro-1,2,3,4-

tetrahydronaphth[1,8-bc]azepine 30, 1H NMR (400 MHz, DMSO-d6):  7.83 (2H, d, J = 

8.0 Hz, 2’-,6’-H),  7.73 (1H, dd, J = 8.3, 1.0 Hz, 7-H), 7.73 (1H, t, J = 7.4 Hz, 4’-H), 7.59 

(2H, t, J = 7.8 Hz, 3’-,5’-H), 7.41 (1H, dd, J = 7.7, 0.8 Hz, 8-H), 7.34 (1H, t, J = 7.7 Hz, 

9-H), 7.30 (1H, t, J = 7.6 Hz, 6-H),  7.13 (1H, br d, J = 6.8 Hz, 5-H), 6.90 (1H, d, J = 7.3 

Hz, 10-H),  4.28 (1H, br) & 4.18 (1H, br) (at 90 oC,  an AB system, J = 16 Hz, 4-H2)*, 

4.15 (2H, s, 2-H2), 3.03 (3H, s, N-CH3);   13C NMR (100 MHz, DMSO-d6):  191.2 

(C=O), 151.1 (10a-C),   135.9 (4’-C), 134.2 (7-C), 134.1 (7a-C), 131.6 ( 4a-C), 129.5 (3’-

,5’-C), 128.7 (2’-,6’-C), 128.3 (4’-C), 128.0 (5-C),  126.7 (10b-C), 126.2 (9-C), 125.8 (6-

C), 121.1 (8-C),  110.2  (10-C),  99.9 (3-C), 63.3 (2-C), 41.6 (4-C),  41.4 (N-CH3). 

Addition of water to the sample precipitated a small amount of 30,  1H NMR (270 HMz, 

CDCl3): 7.77 (2H, d, J = 7.9 Hz,  2’-,6’-H), 7.60 (1H, dd, J = 8.3, 1.1 Hz, 7-H),  7.54 (1H, 

t, J = 7.4 Hz, 4’-H), 7.41 (2H, t, J  = 7.4 Hz, 3’-,5’-H ), 7.16-7.31 (3H, m, 6-,8-,9-H )  

7.02 (1H, br d, J = 6.3 Hz, 5-H),  6.78 (1H, dd, J = 7.2, 1.5 Hz, 10-H),  4. 15  (2H, br, 4-

H),  4.06 (2H, AB system, J = 15.3 Hz,  2-H)*, 3.00 (3H, s, CH3);  13C NMR (67.8 MHz, 

CDCl3): 189.7 (C=O), 150.9 (10a-C),   135.9 (4’-C),  133.9 (7-C), 133.6 (7a-C) 131.3 

(4a-C),  129.0 (3’-,5’-C) , 128.5 (2’-,6’-C),  128.2 (4’-C),  128.0 (5-C),  126.4 (10b-C),  

125.7 (9-C), 125.6 (6-C),  121.0 (8-C),  109.3 (10-C),  99.5 (3-C),  63.5 (2-C),  41.7 (4-

C),  41.0 (N-CH3);  m\z (EI) 346 (M+, 35), 301 (32), 300 ([M-NO2]+, 30), 285 (15), 196 

(32), 195 ([M-NO2-PhCO]+, 66), 194 (67),  181 (52), 180 (53),  168 (51),  152 (25), 

105([PhCO]+, 100). 

*Assignment supported by H/C correlation spectra. 
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X-ray Crystallography. 

All structures were solved and refined with SHELX-97.49 Non-hydrogen atoms were 

assigned anisotropic displacement parameters.  H atoms positions were located and 

refined with isotropic displacement parameters. Molecular geometry calculations were 

made with PLATON,50 and illustrations were made ORTEP-351 and POVRAY.52 

 

Crystal data for 11A: C18H15NO2, Mr = 277.32, triclinic, a = 10.153(3), b = 13.179(7), c 

=  13.179(7) Ǻ, α = 77.35(2), β = 84.61(4), γ = 70.15(2)°, V = 1407.3 Ǻ3, Z = 4, Pī, Dc = 

1.31 gcm-3, μ (MoKα) = 0.08 mm-1, T = 100 K, 6320 unique reflections, 5294 with Fo > 

4σ(Fo), R = 0.040, wR = 0.104. Crystals from methanol. 

 

Crystal data for 11B: C18H15NO2, Mr = 277.32, monoclinic, a = 9.9997(2), b = 

13.1284(2), c =  21.6474(3) Ǻ, β = 95.7020(10), V = 2827.8 Ǻ3, Z = 8, P21/n, Dc = 1.30 

gcm-3, μ (MoKα) = 0.08 mm-1, T = 100 K, 6211 unique reflections, 4157 with Fo > 

4σ(Fo), R = 0.037, wR = 0.080.  Long rods from ethyl acetate. 

 

Crystal data for 11C: C18H15NO2, Mr = 277.32, triclinic, a = 9.7709(4), b = 12.8905(5), c 

=  13.2494(6) Ǻ, α = 70.822(2), β = 68.573(2), γ = 76.360(2)°, V = 1454.45 Ǻ3, Z = 4, Pī, 

Dc = 1.27 gcm-3, μ (MoKα) = 0.08 mm-1, T = 150 K, 6430 unique reflections, 3576 with 

Fo > 4σ(Fo), R = 0.064, wR = 0.152. Crystals from acetone. One of the two independent 

molecules in the asymmetric unit is orientationally disordered over two positions with 

relative populations 17:3. 
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Crystal data for 12: C19H18N2O, Mr = 290.36, monoclinic, a = 9.3770(2), b = 9.7055(2), c 

=  16.7953(3) Ǻ, β = 91.3607(12)°, V = 1528.08 Ǻ3, Z = 4, P21/c, Dc = 1.26 gcm-3, μ 

(MoKα) = 0.08 mm-1, T = 120 K, 3504 unique reflections, 2884 with Fo > 4σ(Fo), R = 

0.045, wR = 0.119.  Crystals from ethyl acetate.  

 

Crystal data for 13: C26H23N3O2, Mr = 409.48, triclinic, a = 9.8308(2), b = 9.6640(3), c =  

12.0688(3) Ǻ, α = 85.4547(15), β = 68.6506(14), γ = 78.8152(15)°, V = 1047.58 Ǻ3, Z = 

2, Pī, Dc = 1.30 gcm-3, μ (MoKα) = 0.08 mm-1, T = 120 K, 4800 unique reflections, 3570 

with Fo > 4σ(Fo), R = 0.051, wR = 0.124. Crystals from ethanol.  (It is interesting to note 

a short contact across the centre of symmetry between two para carbon atoms of ring A 

 (C15----C15: 3.056(2) Å), which is accompanied by edge to face contacts between the 

attached H15 atoms which are directed to the centroids of the [C5-C10] naphthalene rings 

(H15….centroid: 2.86 Å). 

 

Crystal data for 17: C14H14N2O2, Mr = 242.27, monoclinic, a = 15.8700(3), b = 

5.4817(1), c =  28.7715(8) Ǻ, β = 101.0295(8), V = 2456.7(1) Ǻ3, Z = 8, C2/c, Dc = 1.31 

g cm-3, μ (MoKα) = 0.09 mm-1, T = 120 K, 2785 unique reflections, 2023 with Fo > 

4σ(Fo), R = 0.048, wR = 0.127. Crystals from ethyl acetate / hexane  1:2. 

 

Crystal data for 18: C15H16N2O2, Mr = 256.30, monoclinic, a = 10.3347(3), b = 

7.0992(2), c =  18.2556(5) Ǻ, β = 102.897(2), V = 1305.59(6) Ǻ3, Z = 4, P21/n, Dc = 1.30 
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g cm-3, μ (MoKα) = 0.09 mm-1, T = 120 K, 2981 unique reflections, 2600 with Fo > 

4σ(Fo), R = 0.055, wR = 0.163. Crystals from ether. 

 

Crystal data for 22: C21H18N2O3, Mr = 346.37, monoclinic, a = 7.7283(2), b = 

13.6696(4), c =  15.7465(6)Ǻ, β = 95.5779(12), V = 1655.63(9) Ǻ3, Z = 4, P21/c, Dc = 

1.39 g cm-3, μ (MoKα) = 0.09 mm-1, T = 120 K, 3764 unique reflections, 2820 with Fo > 

4σ(Fo), R = 0.047, wR = 0.125. Crystals from acetonitrile. 
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	Structural Studies of Peri-Interactions and Bond Formation Between Electron-rich Atomic Centres and N-Phenyl- carboxamides or Nitroalkenyl Groups.
	Interactions between molecules underpin many chemical processes both in biological systems and in materials chemistry, and include effects such as hydrogen bonding, charge transfer interactions and  π-π stacking. We have been interested in attractive interactions between electrophilic and nucleophilic groups. When pairs of such groups are forced close together, their interaction reveals the through-space electron attracting power of the electrophilic group, and may model a stage in the chemical reaction between the two groups. These studies have built on pioneering work in which incipient bond formation was recognised in medium ring compounds by Bürgi, Dunitz and Schefter1  and the principles of structure correlation developed and applied.2,3  The X-ray crystal structures of naphthalenes 1 bearing a dimethylamino group and an electron deficient alkene or carbonyl substituent in the peri-positions show that the pyramidal dimethylamino group is oriented so that its lone pair lies in the space between the peri groups and the electrophilic group presents a face to the dimethylamino group,4-7 as originally demonstrated by Dunitz et al.4 The 1,5 Me2N---sp2C  separations decreases as the electron deficient group is changed from a N,N-dialkylamide e.g. 2 or 3 (2.764 and 2.698  Ǻ),8 to a methyl ester 4 ( 2.594 Ǻ),4  to a methyl ketone 5 ( 2.557 Ǻ)4 to alkenes      -CH=C(CN)CO2Et 6 (2.531 Ǻ)7 and -CH=C(CN)2  7 (2.413 Ǻ),5 and culminates in almost complete bond formation in the zwitterionic structure 85 where this separation is only 1.651(3)  Ǻ (Table 1).  In contrast, when the dimethylamino group is replaced by the much less nucleophilic methoxy group, the MeO---sp2C separations vary over a much smaller range (2.55 – 2.62 Ǻ), and any trend may be obscured by molecular distortions due to crystal packing.  This led us to use the much more sensitive Me2N---sp2C separations to rank the unsaturated groups in an order of through space accepting ability (Table 1).    Other peri interactions in naphthalene systems have been described, e.g. between  electron-rich groups and alkynes12  or nitriles13   and  between dimethylamino groups and selenium halides14 or  silicon centred groups.15  Of particular note is the use of the peri arrangement to force hydrogen bonding to an amide N atom’s lone pair  as  a model for amide cleavage by cysteine proteases,16 as well as studies on proton sponges17 including their dynamics18 and the use of peri-naphthalenes as chiral auxiliaries.8  Akiba has used 1,8,9-trisubstituted anthracenes to extend studies to  interactions of two methoxy groups with a carbocation centre,19 and interactions of two dimethylamino groups or two methoxy groups with a boron centre, including a measurement of the electron density distribution and topology for the latter case.19,20 Recently, Kirby has shown how the interaction between an amino and a carbonyl group in the solid state is promoted by hydrogen bonding to the carbonyl oxygen atom, 21 Furthermore, he has studied this 
	interaction type using an alicyclic system in which a high degree of bond formation between the groups is favoured by formation of an azaadamantane system.21
	Table 2: Selected geometric data for compounds 11 – 13
	Table 3: Selected geometric data for compounds 17, 18 and 22.
	8-Methoxy- N-phenyl-1-naphthamide 11 

	8-(Dimethylamino)-N-phenyl-1-naphthamide 12
	N-(8-Dimethylamino-1-naphthoyl)-N,N’-diphenylurea 13



