56 research outputs found

    Modeling RR Tel through the Evolution of the Spectra

    Full text link
    We investigate the evolution of RR Tel after the outburst by fitting the emission spectra in two epochs. The first one (1978) is characterized by large fluctuations in the light curve and the second one (1993) by the slow fading trend. In the frame of a colliding wind model two shocks are present: the reverse shock propagates in the direction of the white dwarf and the other one expands towards or beyond the giant. The results of our modeling show that in 1993 the expanding shock has overcome the system and is propagating in the nearby ISM. The large fluctuations observed in the 1978 light curve result from line intensity rather than from continuum variation. These variations are explained by fragmentation of matter at the time of head-on collision of the winds from the two stars. A high velocity (500 km/s) wind component is revealed from the fit of the SED of the continuum in the X-ray range in 1978, but is quite unobservable in the line profiles. The geometrical thickness of the emitting clumps is the critical parameter which can explain the short time scale variabilities of the spectrum and the trend of slow line intensity decrease.Comment: 26 pages, LaTeX (including 5 Tables) + 6 PostScript figures. To appear in "The Astrophysical Journal

    Is supercomplex organization of the respiratory chain required for optimal electron transfer activity?

    Get PDF
    AbstractThe supra-molecular assembly of the main respiratory chain enzymatic complexes in the form of “supercomplexes” has been proved by structural and functional experimental evidence. This evidence strongly contrasts the previously accepted Random Diffusion Model stating that the complexes are functionally connected by lateral diffusion of small redox molecules (i.e. Coenzyme Q and cytochrome c).This review critically examines the available evidence and provides an analysis of the functional consequences of the intermolecular association of the respiratory complexes pointing out the role of Coenzyme Q and of cytochrome c as channeled or as freely diffusing intermediates in the electron transfer activity of their partner enzymes

    Silicates in D-type symbiotic stars: an ISO overview

    Get PDF
    We investigate the IR spectral features of a sample of D-type symbiotic stars. Analyzing unexploited ISO-SWS data, deriving the basic observational parameters of dust bands and comparing them with respect to those observed in other astronomical sources, we try to highlight the effect of environment on grain chemistry and physic. We find strong amorphous silicate emission bands at 10 micron and 18 micron in a large fraction of the sample. The analysis of the 10 micron band, along with a direct comparison with several astronomical sources, reveals that silicate dust in symbiotic stars shows features between the characteristic circumstellar environments and the interstellar medium. This indicates an increasing reprocessing of grains in relation to specific symbiotic behavior of the objects. A correlation between the central wavelength of the 10 and 18 micron dust bands is found. By the modeling of IR spectral lines we investigate also dust grains conditions within the shocked nebulae. Both the unusual depletion values and the high sputtering efficiency might be explained by the formation of SiO moleculae, which are known to be a very reliable shock tracer. We conclude that the signature of dust chemical disturbance due to symbiotic activity should be looked for in the outer, circumbinary, expanding shells where the environmental conditions for grain processing might be achieved. Symbiotic stars are thus attractive targets for new mid-infrared and mm observations.Comment: 24 pages, 6 figures, 5 tables - to be published in A

    The remarkable properties of the symbiotic star AE Circinus

    Full text link
    We present new optical spectroscopy and photometry, 2MASS infrared observations and 24 years of combined AAVSO and AFOEV photometry of the symbiotic star candidate \ae. The long-term light curve is characterized by outbursts lasting several years and having a slow decline of 2×104\sim 2 \times 10^{-4} mag/day. The whole range of variability of the star in the VV band is about 4 magnitudes. The periodogram of the photometric data reveals strong signals at \sim 342 and 171 days. The presence of the emission feature at λ\lambda 6830 \AA at minimum and the detection of absorption lines of a \sim K5 type star confirm the symbiotic classification and suggest that AE Cir is a new member of the small group of s-type yellow symbiotic stars. We estimate a distance of 9.4 kpc. Our spectrum taken at the high state shows a much flatter spectral energy distribution, the disappearance of the λ\lambda 6830 \AA emission feature and the weakness of the He II 4686 emission relative to the Balmer emission lines. Our observations indicate the presence of emission line flickering in time scales of minutes in 2001. The peculiar character of \ae is revealed in the visibility of the secondary star at the high and low state, the light curve resembling a dwarf nova superoutburst and the relatively short low states. The data are hard to reconciliate with standard models for symbiotic star outbursts.Comment: accepted for publication in MNRAS, 7 figure

    Inhibitor sensitivity of respiratory complex I in human platelets: A possible biomarker of ageing

    Get PDF
    AbstractNADH-Coenzyme Q reductase was assayed in platelet mitochondrial membranes obtained from 19 pools of two venous blood samples from female young (19–30 years) individuals and 18 pools from aged ones (66–107 years). The enzyme activities were not significantly changed in the two groups, but a decrease of sensitivity to the specific inhibitor, rotenone, occurred in a substantial number of aged individuals. The results are in agreement with the predictions of the mitochondrial theory of ageing and may be used to develop a sensitive biomarker of the ageing process

    Formation of a disk-structure and jets in the symbiotic prototype Z And during its 2006-2010 active phase

    Full text link
    We present an analysis of spectrophotometric observations of the latest cycle of activity of the symbiotic binary Z And from 2006 to 2010. We estimate the temperature of the hot component of Z And to be \approx 150000 - 170000 K at minimum brightness, decreasing to \approx 90000 K at the brightness maximum. Our estimate of the electron density in the gaseous nebula is N_{e}=10^{10}-10^{12} cm^{-3} in the region of formation of lines of neutral helium and 10^6-10^7 cm^{-3} in the region of formation of the [OIII] and [NeIII] nebular lines. A trend for the gas density derived from helium lines to increase and the gas density derived from [OIII] and [NeIII] lines to simultaneously decrease with increasing brightness of the system was observed. Our estimates show that the ratios of the theoretical and observed fluxes in the [OIII] and [NeIII] lines agree best when the O/Ne ratio is similar to its value for planetary nebulae. The model spectral energy distribution showed that, in addition to a cool component and gaseous nebula, a relatively cool pseudophotosphere (5250-11 500 K) is present in the system. The simultaneous presence of a relatively cool pseudophotosphere and high-ionization spectral lines is probably related to a disk-like structure of the pseudophotosphere. The pseudophotosphere formed very rapidly, over several weeks, during a period of increasing brightness of Z And. We infer that in 2009, as in 2006, the activity of the system was accompanied by a collimated bipolar ejection of matter. In contrast to the situation in 2006, the jets were detected even before the system reached its maximum brightness. Moreover, components with velocities close to 1200 km/s disappeared at the maximum, while those with velocities close to 1800 km/s appeared.Comment: 18 pages, 19 figures, Accepted for publication in Astronomy Report

    FAUST observations of UV sources toward the Virgo cluster

    Get PDF
    We analyze three UV images covering a 100 square degree field toward the Virgo cluster,obtained by the FAUST space experiment. We detect 191 sources to a signal-to-noise ratio of 4.4 and identify 94% of them. Most sources have optical counterparts in existing catalogs and about half are identified as galaxies. Some sources with no listed counterpart were observed at the Wise Observatory. We present the results of low resolution visible spectrophotometry and discuss the foreground 101 stellar sources and the 76 detected galaxies, both in the cluster and in the fore- or background. We derive conclusions on star-formation properties of galaxies and on the total UV flux from discrete and diffuse sources in the cluster. We test for the presence of intra-cluster dust, determine the clustering properties of UV emitting galaxies, and derive the UV luminosity function of Virgo galaxies.Comment: 60 pages, LaTeX (including 5 Tables) + 8 PostScript figures. To appear in "The Astrophysical Journal

    The Continuing Slow Decline of AG Pegasi

    Full text link
    We analyze optical and ultraviolet observations of the symbiotic binary AG Pegasi acquired during 1992-97. The bolometric luminosity of the hot component declined by a factor of 2-3 from 1980-1985 to 1997. Since 1992, the effective temperature of the hot component may have declined by 10%-20%, but this decline is comparable to the measurement errors. Optical observations of H-beta and He I emission show a clear illumination effect, where high energy photons from the hot component ionize the outer atmosphere of the red giant. Simple illumination models generally account for the magnitude of the optical and ultraviolet emission line fluxes. High ionization emission lines - [Ne V], [Mg V], and [Fe VII] - suggest mechanical heating in the outer portions of the photoionized red giant wind. This emission probably originates in a low density region \sim 30-300 AU from the central binary.Comment: 17 pages, 7 pages, 5 tables; to be published in the Astronomical Journal, July 200

    A "Combination Nova" Outburst in Z Andromedae: Nuclear Shell Burning Triggered by a Disk Instability

    Full text link
    We describe observational evidence for a new kind of interacting-binary-star outburst that involves both an accretion instability and an increase in thermonuclear shell burning on the surface of an accreting white dwarf. We refer to this new type of eruption as a combination nova. In late 2000, the prototypical symbiotic star Z Andromedae brightened by roughly two magnitudes in the optical. We observed the outburst in the radio with the VLA and MERLIN, in the optical both photometrically and spectroscopically, in the far ultraviolet with FUSE, and in the X-rays with both Chandra and XMM. The two-year-long event had three distinct stages. During the first stage, the optical rise closely resembled an earlier, small outburst that was caused by an accretion-disk instability. In the second stage, the hot component ejected an optically thick shell of material. In the third stage, the shell cleared to reveal a white dwarf whose luminosity remained on the order of 10^4 Lsun for approximately one year. The eruption was thus too energetic to have been powered by accretion alone. We propose that the initial burst of accretion was large enough to trigger enhanced nuclear burning on the surface of the white dwarf and the ejection of an optically thick shell of material. This outburst therefore combined elements of both a dwarf nova and a classical nova. Our results have implications for the long-standing problem of producing shell flashes with short recurrence times on low-mass white dwarfs in symbiotic stars.Comment: Accepted for publication in ApJ. 24 pages, 10 figure
    corecore