30 research outputs found

    Aerosol indirect effects on glaciated clouds. Part I: Model description

    Get PDF
    Various improvements were made to a state-of-the-art aerosol–cloud model and comparison of the model results with observations from field campaigns was performed. The strength of this aerosol–cloud model is in its ability to explicitly resolve all the known modes of heterogeneous cloud droplet activation and ice crystal nucleation. The model links cloud particle activation with the aerosol loading and chemistry of seven different aerosol species. These improvements to the model resulted in more accurate prediction especially of droplet and ice crystal number concentrations in the upper troposphere and enabled the model to directly sift the aerosol indirect effects based on the chemistry and concentration of the aerosols. In addition, continental and maritime cases were simulated for the purpose of validating the aerosol–cloud model and for investigating the critical microphysical and dynamical mechanisms of aerosol indirect effects from anthropogenic solute and solid aerosols, focusing mainly on glaciated clouds. The simulations showed that increased solute aerosols reduced cloud particle sizes by about 5 μm and inhibited warm rain processes. Cloud fractions and their optical thicknesses were increased quite substantially in both cases. Although liquid mixing ratios were boosted, there was however a substantial reduction of ice mixing ratios in the upper troposphere owing to the increase in snow production aloft. These results are detailed in the subsequent parts of this study

    PM-GCD – a combined IR–MW satellite technique for frequent retrieval of heavy precipitation

    Get PDF
    Abstract. Precipitation retrievals based on measurements from microwave (MW) radiometers onboard low-Earth-orbit (LEO) satellites can reach high level of accuracy – especially regarding convective precipitation. At the present stage though, these observations cannot provide satisfactory coverage of the evolution of intense and rapid precipitating systems. As a result, the obtained precipitation retrievals are often of limited use for many important applications – especially in supporting authorities for flood alerts and weather warnings. To tackle this problem, over the past two decades several techniques have been developed combining accurate MW estimates with frequent infrared (IR) observations from geosynchronous (GEO) satellites, such as the European Meteosat Second Generation (MSG). In this framework, we have developed a new fast and simple precipitation retrieval technique which we call Passive Microwave – Global Convective Diagnostic, (PM-GCD). This method uses MW retrievals in conjunction with the Global Convective Diagnostic (GCD) technique which discriminates deep convective clouds based on the difference between the MSG water vapor (6.2 μm) and thermal-IR (10.8 μm) channels. Specifically, MSG observations and the GCD technique are used to identify deep convective areas. These areas are then calibrated using MW precipitation estimates based on observations from the Advanced Microwave Sounding Unit (AMSU) radiometers onboard operational NOAA and Eumetsat satellites, and then finally propagated in time with a simple tracking algorithm. In this paper, we describe the PM-GCD technique, analyzing its results for a case study that refers to a flood event that struck the island of Sicily in southern Italy on 1–2 October 2009

    Lightning-based propagation of convective rain fields

    Get PDF
    Abstract. This paper describes a new multi-sensor approach for continuously monitoring convective rain cells. It exploits lightning data from surface networks to propagate rain fields estimated from multi-frequency brightness temperature measurements taken by the AMSU/MHS microwave radiometers onboard NOAA/EUMETSAT low Earth orbiting operational satellites. Specifically, the method allows inferring the development (movement, morphology and intensity) of convective rain cells from the spatial and temporal distribution of lightning strokes following any observation by a satellite-borne microwave radiometer. Obviously, this is particularly attractive for real-time operational purposes, due to the sporadic nature of the low Earth orbiting satellite measurements and the continuous availability of ground-based lightning measurements – as is the case in most of the Mediterranean region. A preliminary assessment of the lightning-based rainfall propagation algorithm has been successfully made by using two pairs of consecutive AMSU observations, in conjunction with lightning measurements from the ZEUS network, for two convective events. Specifically, we show that the evolving rain fields, which are estimated by applying the algorithm to the satellite-based rainfall estimates for the first AMSU overpass, show an overall agreement with the satellite-based rainfall estimates for the second AMSU overpass. </jats:p

    Novel Applications of State-of-the-Art Gamma-Ray Imaging Technique: From Nuclear Decommissioning and Radioprotection to Radiological Characterization and Safeguards

    Get PDF
    Gamma-ray imaging is a powerful technique subjected to important research efforts in nonmedical fields, providing information about the possible spatial distribution of radioactive materials emitting photons and potential contamination spots, in generic area survey or to specific component analyses. This capability opens up a range of possible applications in nuclear installations and radioactive waste management sites, where radiation survey protocols and radiological characterization of items may be highly and positively impacted by this technique. In this work, a new-generation 3-D pixelated CdZnTe gamma-ray imaging and spectrometry detector has been used in the context of the TRIGA RC-1 Research Reactor at the ENEA Casaccia Research Centre to test several applications where gamma-ray imaging can provide valuable information otherwise unknown (with equivalent level of accuracy and effort). Experiments carried out range from radiological survey, where hotspots are identified and radioactive items are sorted from conventional waste to improvements in the quantification of gamma emitters via gamma-spectrometry analysis, and from safeguards and nonproliferation purposes (e.g., providing methods to assess the amount of special nuclear material (SNM), which remains fixed and unchanged in time) up to radiation protection issues (e.g., identification of unexpected contributions to personnel total exposure). The results obtained in this experimental campaign, as well as the validations provided by comparison with 'traditional' methods, demonstrate the applicability of state-of-the-art gamma-ray imaging systems to the presented tasks, with consequences that could positively impact the current radiation survey routines and radiological characterization protocols followed at ENEA TRIGA RC-1 as well as other installations

    Identification of a defected fuel rod in the TRIGA R.C.-1 facility of the ENEA Casaccia Research Center: radiation protection aspects

    Get PDF
    The nuclear facility TRIGA RC-1 is located at the ENEA Casaccia Research Center in Rome. It is a thermal spectrum research reactor with a thermal power of 1&nbsp;MW and a Mark III containment. The failure of the fuel cladding of the General Atomic TRIGA is a well-known phenomenon in the literature and is normally expected during its lifetime. Depending on the severity of the cracking, this results in the transfer of radioactivity from inside the fuel rods to the demineralized moderation and cooling water of the primary circuit. This occurs especially when the fuel is heated, as the temperature rise leads to an increase in the internal pressure inside the rods, causing fission products, especially gaseous ones, to be released through the cracks. The sustained release of these fission products over time causes impurities with longer half-lives (e.g., Cs-137) to accumulate in the primary water purification system and, in particular, in the ion exchange resin tank. Therefore, the detection of Cs-137 in the ion exchange resins of the primary water purification system of the reactor is a sufficiently clear indication of the occurrence of such disturbances. Indeed, Cs-137 is not only a direct fission product of U-235, but is also produced by the decay of Xe-137 (one of the major fission noble gasses), which, because of its physical nature, readily escapes through the rod cladding. To ensure worker protection from ionizing radiation during the identification and replacement of defective fuel rods, a special program of physical, environmental, and personal radiation protection monitoring was conducted. In addition to a brief description of the work performed, this report presents the results of radiometric measurements and associated individual dose assessment performed before, during, and after the identification and replacement of the defected fuel elements

    The value-add of tailored seasonal forecast information for industry decision-making

    Get PDF
    There is a growing need for more systematic, robust and comprehensive in-formation on the value-add of climate services from both the demand and supply sides. There is a shortage of published value-add assessments which focus on the decision-making context, involve participatory or co-evaluation approaches, avoid over-simplification and address both the quantitative (e.g. economic) and qualitative (e.g. social) value of climate services. The twelve case studies which formed the basis of the European Union-funded SECLI-FIRM project were co-designed by industrial and research partners in order to address these gaps, focusing on the use of tailored sub-seasonal and seasonal forecasts in the energy and water industries. For eight of these case studies it was pos-sible to apply quantitative economic valuation methods: econometric modelling was used for five case studies while three case studies used both cost-loss (relative economic value) analysis and avoided costs. The case studies illustrate the challenges in attempting to produce quantitative estimates of the economic value add of these forecasts. At the same time, many of them highlight how practical value for users – transcending the actual economic value – can be enhanced, for example, through the provision of climate services as an exten-sion to their current use of weather forecasts and with the visualisation tailored towards the user

    Estimation of local and external contributions of biomass burning to PM2.5 in an industrial zone included in a large urban settlement

    Get PDF
    A total of 85 PM2.5 samples were collected at a site located in a large industrial zone (Porto Marghera, Venice, Italy) during a 1-year-long sampling campaign. Samples were analyzed to determine water-soluble inorganic ions, elemental and organic carbon, and levoglucosan, and results were processed to investigate the seasonal patterns, the relationship between the analyzed species, and the most probable sources by using a set of tools, including (i) conditional probability function (CPF), (ii) conditional bivariate probability function (CBPF), (iii) concentration weighted trajectory (CWT), and (iv) potential source contribution function (PSCF) analyses. Furthermore, the importance of biomass combustions to PM2.5 was also estimated. Average PM2.5 concentrations ranged between 54 and 16 μg m−3 in the cold and warm period, respectively. The mean value of total ions was 11 μg m−3 (range 1–46 μg m−3): The most abundant ion was nitrate with a share of 44 % followed by sulfate (29 %), ammonium (14 %), potassium (4 %), and chloride (4 %). Levoglucosan accounted for 1.2 % of the PM2.5 mass, and its concentration ranged from few ng m−3 in warm periods to 2.66 μg m−3 during winter. Average concentrations of levoglucosan during the cold period were higher than those found in other European urban sites. This result may indicate a great influence of biomass combustions on particulate matter pollution. Elemental and organic carbon (EC, OC) showed similar behavior, with the highest contributions during cold periods and lower during summer. The ratios between biomass burning indicators (K+, Cl−, NO3−, SO42−, levoglucosan, EC, and OC) were used as proxy for the biomass burning estimation, and the contribution to the OC and PM2.5 was also calculated by using the levoglucosan (LG)/OC and LG/PM2.5 ratios and was estimated to be 29 and 18 %, respectively

    Microwave single-scattering properties of randomly oriented soft-ice hydrometeors

    No full text
    Large ice hydrometeors are usually present in intense convective clouds and may significantly affect the upwelling radiances that are measured by satellite-borne microwave radiometers – especially, at millimeter-wavelength frequencies. Thus, interpretation of these measurements (e.g., for precipitation retrieval) requires knowledge of the single scattering properties of ice particles. On the other hand, shape and internal structure of these particles (especially, the larger ones) is very complex and variable, and therefore it is necessary to resort to simplifying assumptions in order to compute their single-scattering parameters. &lt;br&gt;&lt;br&gt; In this study, we use the discrete dipole approximation (DDA) to compute the absorption and scattering efficiencies and the asymmetry factor of two kinds of quasi-spherical and non-homogeneous soft-ice particles in the frequency range 50–183 GHz. Particles of the first kind are modeled as quasi-spherical ice particles having randomly distributed spherical air inclusions. Particles of the second kind are modeled as random aggregates of ice spheres having random radii. In both cases, particle densities and dimensions are coherent with the snow hydrometeor category that is utilized by the University of Wisconsin – Non-hydrostatic Modeling System (UW-NMS) cloud-mesoscale model. Then, we compare our single-scattering results for randomly-oriented soft-ice hydrometeors with corresponding ones that make use of: a) effective-medium equivalent spheres, b) solid-ice equivalent spheres, and c) randomly-oriented aggregates of ice cylinders. Finally, we extend to our particles the scattering formulas that have been developed by other authors for randomly-oriented aggregates of ice cylinders

    A procedure to evaluate the factors determining the elemental composition of PM2.5. Case study: the Veneto region (northeastern Italy)

    No full text
    The Po Valley is one of the most important hot spots in Europe for air pollution. Morphological features and anthropogenic pressures lead to frequent breaching of air quality standards and to high-pollution episodes in an ~46 Ã\u97 103-km2-wide alluvial lowland. Therefore, it is increasingly important to study the air quality in a wide geographical scale to better implement possible and successful mitigation measures. The Veneto region lies in the eastern part of the Po Valley and the elemental composition of PM has been mainly studied in the Venice area, whereas scarce data are available for the remaining territory of the region. In this study, the elemental composition of PM2.5was investigated over 1 year (2012â\u80\u932013) at six major cities of the Veneto region. Samples were analyzed for 16 elements (Ca, Al, Fe, S, K, Mg, Ti, Mn, Zn, Ba, As, Ni, Pb, Sb, V, and Cu), and results were processed to investigate spatial and seasonal variations, the influence of meteorological factors, and the most probable sources by using a procedure based on (i) elemental ratios (Cu/Sb, Cu/Zn, Cu/Pb, Mn/V, V/Ni, and Zn/Pb), (ii) cluster analysis on wind data, and (iii) conditional probability function (CPF). The percentage of elements in PM2.5ranged between 11 and 20%, and Ca and S were the most abundant elements in the region. Typical seasonal variations and similar trends were exhibited by each element, especially in the lowland. Some elements such as Zn, K, Mn, Pb, and Sb were found at high concentrations during the cold period. However, no similar dispersion processes were observed throughout the region, and their concentrations were mostly depending on individual local sources. In the alpine and foothill parts of the region, lower concentrations were recorded with respect to the Po Valley cities, which resulted enriched of most of the elements considered in this study. The cluster analysis on wind data and the CPF of the ratio-related sources demonstrated that a widespread pollution condition exists in the region, apart from the coastal area. However, specific directions (e.g., a link with high-traffic roads, industrial areas, and airports) resulted the most probable explanation for each ratio-related source. In addition, the Veneto region hosts one of the most important Mediterranean ports for the cruise sector (Venice harbor), and its impact was previously demonstrated in the historical city center. In this study, the impact of Venice shipping emissions was estimated to be 3.5% of PM2.5in some particular days
    corecore