3,198 research outputs found

    Urban growth drivers in a Europe of sticky people and implicit boundaries

    Get PDF
    We investigate urban GDP pc growth across the EU12 using data for functionally defined cities - rather than administrative regions. We test hypotheses on the role of human capital, EU integration and fragmentation of urban government and explore spatial dependence and mechanisms of spatial interaction. Results are acceptable on standard econometric tests without measures of spatial interaction but there is spatial dependence. If variables reflecting spatial adjustment are included, they are statistically significant and eliminate spatial dependence. Not only do the results now provide consistent estimates of parameters, they also support relevant theoretical insights and show national borders are still significant barriers to economic adjustment. People in Europe are sticky so it is unreasonable to assume spatial disparities will disappear. Our findings also imply that cities in Europe form national rather than a single continental system

    Toward understanding ambulatory activity decline in Parkinson disease

    Full text link
    BACKGROUND: Declining ambulatory activity represents an important facet of disablement in Parkinson disease (PD). OBJECTIVE: The primary study aim was to compare the 2-year trajectory of ambulatory activity decline with concurrently evolving facets of disability in a small cohort of people with PD. The secondary aim was to identify baseline variables associated with ambulatory activity at 1- and 2-year follow-up assessments. DESIGN: This was a prospective, longitudinal cohort study. METHODS: Seventeen people with PD (Hoehn and Yahr stages 1-3) were recruited from 2 outpatient settings. Ambulatory activity data were collected at baseline and at 1- and 2-year annual assessments. Motor, mood, balance, gait, upper extremity function, quality of life, self-efficacy, and levodopa equivalent daily dose data and data on activities of daily living also were collected. RESULTS: Participants displayed significant 1- and 2-year declines in the amount and intensity of ambulatory activity concurrently with increasing levodopa equivalent daily dose. Worsening motor symptoms and slowing of gait were apparent only after 2 years. Concurrent changes in the remaining clinical variables were not observed. Baseline ambulatory activity and physical performance variables had the strongest relationships with 1- and 2-year mean daily steps. LIMITATIONS: The sample was small and homogeneous. CONCLUSIONS: Future research that combines ambulatory activity monitoring with a broader and more balanced array of measures would further illuminate the dynamic interactions among evolving facets of disablement and help determine the extent to which sustained patterns of recommended daily physical activity might slow the rate of disablement in PD.This study was funded primarily by the Davis Phinney Foundation and the Parkinson Disease Foundation. Additional funding was provided by Boston University Building Interdisciplinary Research Careers in Women's Health (K12 HD043444), the National Institutes of Health (R01NS077959), the Utah Chapter of the American Parkinson Disease Association (APDA), the Greater St Louis Chapter of the APDA, and the APDA Center for Advanced PD Research at Washington University. (Davis Phinney Foundation; Parkinson Disease Foundation; K12 HD043444 - Boston University Building Interdisciplinary Research Careers in Women's Health; R01NS077959 - National Institutes of Health; Utah Chapter of the American Parkinson Disease Association (APDA); Greater St Louis Chapter of the APDA; APDA Center for Advanced PD Research at Washington University

    Balance differences in people with Parkinson disease with and without freezing of gait

    Full text link
    Published in final edited form as: Gait Posture. 2015 September ; 42(3): 306–309. doi:10.1016/j.gaitpost.2015.06.007.BACKGROUND: Freezing of gait (FOG) is a relatively common and remarkably disabling impairment associated with Parkinson disease (PD). Laboratory-based measures indicate that individuals with FOG (PD+FOG) have greater balance deficits than those without FOG (PD-FOG). Whether such differences also can be detected using clinical balance tests has not been investigated. We sought to determine if balance and specific aspects of balance, measured using Balance Evaluation Systems Test (BESTest), differs between PD+FOG and PD-FOG. Furthermore, we aimed to determine if time-efficient clinical balance measures (i.e. Mini-BESTest, Berg Balance Scale (BBS)) could detect balance differences between PD+FOG and PD-FOG. METHODS: Balance of 78 individuals with PD, grouped as either PD+FOG (n=32) or PD-FOG (n=46), was measured using the BESTest, Mini-BESTest, and BBS. Between-groups comparisons were conducted for these measures and for the six sections of the BESTest using analysis of covariance. A PD composite score was used as a covariate. RESULTS: Controlling for motor sign severity, PD duration, and age, PD+FOG had worse balance than PD-FOG when measured using the BESTest (p=0.008, F=7.35) and Mini-BESTest (p=0.002, F=10.37), but not the BBS (p=0.27, F=1.26). BESTest section differences were noted between PD+FOG and PD-FOG for reactive postural responses (p<0.001, F=14.42) and stability in gait (p=0.003, F=9.18). CONCLUSIONS: The BESTest and Mini-BESTest, which specifically assessed reactive postural responses and stability in gait, were more likely than the BBS to detect differences in balance between PD+FOG and PD-FOG. Because it is more time efficient to administer, the Mini-BESTest may be the preferred tool for assessing balance deficits associated with FOG.This study was conducted with funding from the Davis Phinney Foundation, Parkinson's Disease Foundation, NIH R01 NS077959, NIH UL1 TR000448, Greater St. Louis American Parkinson Disease Association (APDA), APDA Center for Advanced PD Research at Washington University in St. Louis. The funding sources had no role in the study design, in the collection, analysis and interpretation of data; in the writing of the manuscript; or in the decision to submit the manuscript for publication. (Davis Phinney Foundation; Parkinson's Disease Foundation; R01 NS077959 - NIH; UL1 TR000448 - NIH; Greater St. Louis American Parkinson Disease Association (APDA); APDA Center for Advanced PD Research at Washington University in St. Louis

    Social experience does not abolish cultural diversity in eye movements.

    Get PDF
    Adults from Eastern (e.g., China) and Western (e.g., USA) cultural groups display pronounced differences in a range of visual processing tasks. For example, the eye movement strategies used for information extraction during a variety of face processing tasks (e.g., identification and facial expressions of emotion categorization) differs across cultural groups. Currently, many of the differences reported in previous studies have asserted that culture itself is responsible for shaping the way we process visual information, yet this has never been directly investigated. In the current study, we assessed the relative contribution of genetic and cultural factors by testing face processing in a population of British Born Chinese adults using face recognition and expression classification tasks. Contrary to predictions made by the cultural differences framework, the majority of British Born Chinese adults deployed "Eastern" eye movement strategies, while approximately 25% of participants displayed "Western" strategies. Furthermore, the cultural eye movement strategies used by individuals were consistent across recognition and expression tasks. These findings suggest that "culture" alone cannot straightforwardly account for diversity in eye movement patterns. Instead a more complex understanding of how the environment and individual experiences can influence the mechanisms that govern visual processing is required

    DECIPHER: Improving genetic diagnosis through dynamic integration of genomic and clinical data.

    Get PDF
    DECIPHER (Database of Genomic Variation and Phenotype in Humans Using Ensembl Resources) shares candidate diagnostic variants and phenotypic data from patients with genetic disorders to facilitate research and improve the diagnosis, management, and therapy of rare diseases. The platform sits at the boundary between genomic research and the clinical community. DECIPHER aims to ensure that the most up-to-date data are made rapidly available within its interpretation interfaces to improve clinical care. Newly integrated cardiac case-control data that provide evidence of gene-disease associations and inform variant interpretation exemplify this mission. New research resources are presented in a format optimized for use by a broad range of professionals supporting the delivery of genomic medicine. The interfaces within DECIPHER integrate and contextualize variant and phenotypic data, helping to determine a robust clinico-molecular diagnosis for rare-disease patients, which combines both variant classification and clinical fit. DECIPHER supports discovery research, connecting individuals within the rare-disease community to pursue hypothesis-driven research. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 24 is August 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates

    Two-year trajectory of fall risk in people with Parkinson disease: a latent class analysis

    Full text link
    Published in final edited form as: Arch Phys Med Rehabil. 2016 March ; 97(3): 372–379.e1. doi:10.1016/j.apmr.2015.10.105.OBJECTIVE: To examine fall risk trajectories occurring naturally in a sample of individuals with early to middle stage Parkinson disease (PD). DESIGN: Latent class analysis, specifically growth mixture modeling (GMM), of longitudinal fall risk trajectories. SETTING: Assessments were conducted at 1 of 4 universities. PARTICIPANTS: Community-dwelling participants with PD of a longitudinal cohort study who attended at least 2 of 5 assessments over a 2-year follow-up period (N=230). INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: Fall risk trajectory (low, medium, or high risk) and stability of fall risk trajectory (stable or fluctuating). Fall risk was determined at 6 monthly intervals using a simple clinical tool based on fall history, freezing of gait, and gait speed. RESULTS: The GMM optimally grouped participants into 3 fall risk trajectories that closely mirrored baseline fall risk status (P=.001). The high fall risk trajectory was most common (42.6%) and included participants with longer and more severe disease and with higher postural instability and gait disability (PIGD) scores than the low and medium fall risk trajectories (P<.001). Fluctuating fall risk (posterior probability <0.8 of belonging to any trajectory) was found in only 22.6% of the sample, most commonly among individuals who were transitioning to PIGD predominance. CONCLUSIONS: Regardless of their baseline characteristics, most participants had clear and stable fall risk trajectories over 2 years. Further investigation is required to determine whether interventions to improve gait and balance may improve fall risk trajectories in people with PD.Supported by the Davis Phinney Foundation, the Parkinson's Disease Foundation, National Institutes of Health (NIH) (grant nos. NIH R01 NS077959 and NIH UL1 TR000448), the Massachusetts and Utah Chapters of the American Parkinson Disease Association (APDA), the Greater St Louis Chapter of the APDA, and the APDA Center for Advanced Research at Washington University. (Davis Phinney Foundation; Parkinson's Disease Foundation; NIH R01 NS077959 - National Institutes of Health (NIH); NIH UL1 TR000448 - National Institutes of Health (NIH); Utah Chapter of the American Parkinson Disease Association (APDA); Greater St Louis Chapter of the APDA; APDA Center for Advanced Research at Washington University; Massachusetts Chapter of the American Parkinson Disease Association (APDA)

    Are the average gait speeds during the 10 meter and 6 minute walk tests redundant in Parkinson disease?

    Full text link
    Published in final edited form as: Gait Posture. 2017 February ; 52: 178–182. doi:10.1016/j.gaitpost.2016.11.033.We investigated the relationships between average gait speed collected with the 10Meter Walk Test (Comfortable and Fast) and 6Minute Walk Test (6MWT) in 346 people with Parkinson disease (PD) and how the relationships change with increasing disease severity. Pearson correlation and linear regression analyses determined relationships between 10Meter Walk Test and 6MWT gait speed values for the entire sample and for sub-samples stratified by Hoehn & Yahr (H&Y) stage I (n=53), II (n=141), III (n=135) and IV (n=17). We hypothesized that redundant tests would be highly and significantly correlated (i.e. r>0.70, p<0.05) and would have a linear regression model slope of 1 and intercept of 0. For the entire sample, 6MWT gait speed was significantly (p<0.001) related to the Comfortable 10 Meter Walk Test (r=0.75) and Fast 10Meter Walk Test (r=0.79) gait speed, with 56% and 62% of the variance in 6MWT gait speed explained, respectively. The regression model of 6MWT gait speed predicted by Comfortable 10 Meter Walk gait speed produced slope and intercept values near 1 and 0, respectively, especially for participants in H&Y stages II-IV. In contrast, slope and intercept values were further from 1 and 0, respectively, for the Fast 10Meter Walk Test. Comfortable 10 Meter Walk Test and 6MWT gait speeds appeared to be redundant in people with moderate to severe PD, suggesting the Comfortable 10 Meter Walk Test can be used to estimate 6MWT distance in this population.This study was funded by the Davis Phinney Foundation, the Parkinson's Disease Foundation, and the National Institutes of Health (R01 NS077959, K12 HD055931, UL1 TR000448). The funding sources had no input related to study design, data collection, or decision to submit for publication. (Davis Phinney Foundation; Parkinson's Disease Foundation; R01 NS077959 - National Institutes of Health; K12 HD055931 - National Institutes of Health; UL1 TR000448 - National Institutes of Health

    Coherent optical phase transfer over a 32-km fiber with 1-s instability at 10−1710^{-17}

    Full text link
    The phase coherence of an ultrastable optical frequency reference is fully maintained over actively stabilized fiber networks of lengths exceeding 30 km. For a 7-km link installed in an urban environment, the transfer instability is 6×10−186 \times 10^{-18} at 1-s. The excess phase noise of 0.15 rad, integrated from 8 mHz to 25 MHz, yields a total timing jitter of 0.085 fs. A 32-km link achieves similar performance. Using frequency combs at each end of the coherent-transfer fiber link, a heterodyne beat between two independent ultrastable lasers, separated by 3.5 km and 163 THz, achieves a 1-Hz linewidth.Comment: 4 pages, 4 figure

    Ballistic Performance of Porous-Ceramic, Thermal Protection Systems to 9 km/s

    Get PDF
    Porous-ceramic, thermal protection systems are used heavily in current reentry vehicles like the Orbiter, and they are currently being proposed for the next generation of US manned spacecraft, Orion. These materials insulate the structural components and sensitive components of a spacecraft against the intense thermal environments of atmospheric reentry. These materials are also highly exposed to solid particle space environment hazards. This paper discusses recent impact testing up to 9.65 km/s on ceramic tiles similar to those used on the Orbiter. These tiles are a porous-ceramic insulator of nominally 8 lb/ft(exp 3) alumina-fiber-enhanced-thermal-barrier (AETB8) coated with a damage-resistant, toughened-unipiece-fibrous-insulation/reaction-cured-glass layer (TUFI/RCG)

    Ballistic Performance of Porous Ceramic Thermal Protection Systems at 9 km/s

    Get PDF
    Porous-ceramic, thermal-protection-systems are used heavily in current reentry vehicles like the Orbiter, and they are currently being proposed for the next generation of manned spacecraft, Orion. These materials insulate the structural components and sensitive electronic components of a spacecraft against the intense thermal environments of atmospheric reentry. Furthermore, these materials are also highly exposed to space environmental hazards like meteoroid and orbital debris impacts. This paper discusses recent impact testing up to 9 km/s on ceramic tiles similar to those used on the Orbiter. These tiles have a porous-batting of nominally 8 lb/cubic ft alumina-fiber-enhanced-thermal-barrier (AETB8) insulating material coated with a damage-resistant, toughened-unipiece-fibrous-insulation (TUFI) layer
    • …
    corecore