2,709 research outputs found
Long-distance remote comparison of ultrastable optical frequencies with 1e-15 instability in fractions of a second
We demonstrate a fully optical, long-distance remote comparison of
independent ultrastable optical frequencies reaching a short term stability
that is superior to any reported remote comparison of optical frequencies. We
use two ultrastable lasers, which are separated by a geographical distance of
more than 50 km, and compare them via a 73 km long phase-stabilized fiber in a
commercial telecommunication network. The remote characterization spans more
than one optical octave and reaches a fractional frequency instability between
the independent ultrastable laser systems of 3e-15 in 0.1 s. The achieved
performance at 100 ms represents an improvement by one order of magnitude to
any previously reported remote comparison of optical frequencies and enables
future remote dissemination of the stability of 100 mHz linewidth lasers within
seconds.Comment: 7 pages, 4 figure
Improved Dynamic Postural Task Performance without Improvements in Postural Responses: The Blessing and the Curse of Dopamine Replacement
Introduction. Dopamine-replacement medications may improve mobility while not improving responses to postural challenges and could therefore increase fall risk. The purpose of this study was to measure reactive postural responses and gait-related mobility of patients with PD during ON and OFF medication conditions. Methods. Reactive postural responses to the Pull Test and performance of the Functional Gait Assessment (FGA) were recorded from 15 persons with PD during ON and OFF medication conditions. Results. Persons with PD demonstrated no significant difference in the reactive postural responses between medication conditions but demonstrated significantly better performance on the FGA when ON medications compared to OFF. Discussion/Conclusion. Dopamine-replacement medications alone may improve gait-related mobility without improvements in reactive postural responses and therefore could result in iatrogenic increases in fall risk. Rehabilitation providers should be aware of the side effects and limitations of medication treatment and implement interventions to improve postural responses
Separation of rare earths and other valuable metals from deep-eutectic solvents: a new alternative for the recycling of used NdFeB magnets
Deep-eutectic solvents (DESs) are used as a promising alternative to aqueous solutions for the recovery of valuable metals from NdFeB magnets. A deep-eutectic solvent based on choline chloride and lactic acid (molar ratio 1 : 2) was used for the leaching of rare earths and other metals from NdFeB magnets. A process for the separation of Fe, B and Co from Nd and Dy in the deep-eutectic solvent was developed by using the ionic liquid tricaprylmethylammonium thiocyanate (Aliquat 336 SCN, [A336][SCN]) diluted in toluene (0.9 M). The extraction parameters were optimized and stripping of B was efficiently carried out by HCl, while EDTA was employed for the recovery of Fe and Co. The separation of Nd and Dy was assessed by using two different types of extractants, a mixture of trialkylphosphine oxides (Cyanex 923) and bis(2-ethylhexyl) phosphoric acid (D2EHPA). Based on the distribution ratios, separation factors and the ease of subsequent stripping, Cyanex 923 was chosen as the most effective extractant. The purified Dy present in the less polar phase was easily recovered by stripping with water, while the Nd present in the deep-eutectic solvent was recovered by precipitation stripping with a stoichiometric amount of oxalic acid. Nd2O3 and Dy2O3 were recovered with a purity of 99.87% and 99.94%, respectively. The feasibility to scale up this separation process was corroborated by a setup of mixer-settlers and highlighted by the possibility to fully recover and reuse the deep-eutectic solvent and the less polar phases employed in the extractions. The new proposed system based on a deep-eutectic solvent combined with traditional organic extraction phases presented higher selectivities and efficiencies than the analogous aqueous system. Extended X-ray absorption fine structure (EXAFS) was employed to elucidate the different mechanisms for extraction of Co and Fe from the deep-eutectic solvent and from an aqueous solution
Ecological Effects of Major Storms on Coastal Watersheds and Coastal Waters: Hurricane Bob on Cape Cod
Hurricane Bob, a category 3 storm, made landfall on Cape Cod in August 1991, and its effects on watersheds and adjoining estuaries were detected in the ongoing studies being caried out as part of the Waquoit Bay Land Margin Ecosystems Research project. On land, Bob had only minor overall effects on forests; localized wind bursts did snap and break trees in small and widely scattered forest parcels. Wind stripped up to half the leaves of deciduous trees and many herbaceous plants on the watershed, and most remaining leaves were damaged by salt, so that by the end of Aug, Cape Cod forests were defoliated. Damaged growing tips of exposed trees were evident for several growing seasons. The salt exposure was followed by a burst of growth and bloom in some plants during Sep-Oct. Forest invertebrates were disturbed by the storm. Nests of hornets and wasps, for example, were apparently destroyed and the survivors became a serious pest problem: hospital records show a ten-fold increase in cases of wasp stings just after Bob. Populations of these insects did not return to earlier abundance for several years. Birds and mammals did not appear to have suffered much damage. Leaching of salt to soils released previously-adsorbed soil ammonium. Such loss of critical nitrogen may be in part responsible for the characteristically dwarfed near-shore coastal forests, as well as adds nitrogen to groundwater that in turn transports the nitrogen to receiving waters. On the Bay, Bob thoroughly mixed the water column, but the stratification was restored within 1-2 days after passage of the storm. Short recovery times might be characteristic of shallow bays with short (2-3 d) water residence times. Bob opened a new inlet to Waquoit Bay, which remains open. The new inlet exerts only minor effects on circulation within the Bay, but did create localized damage to dune and eelgrass habitats near the new inlet. The mixing of the water column released major amounts of nutrients that were held within the macroalgal canopy and upper sediments, into the upper layers, and prompted a short-lived (2-3 d) phytoplankton bloom. Biomass of unattached macroalgae was not affected by Bob. Respiration and nitrogen content of the dominant macroalgal species were elevated after passage of the storm, but returned to normal rates after several days. Nearly all above-sediment eelgrass biomass was removed, but returned to previous biomass during the next growing season. There was no visible damage to fringing salt marsh habitats. Damage to aquatic animals appears to have been minimal. A small decrease in water temperature and increased respiration by macroalgae led to decreased total net ecosystem production and increased net ecosystem respiration, but the decreases disappeared after 2 d. The effects of Hurricane Bob seemed more intense and protracted on land than on aquatic ecosystems. Recovery from the various disturbances took hours to days in the aquatic system, but months to decades in terrestrial components. Rigid, larger organisms attached or rooted to substrates seem most subject to storm-related disturbances
General boundary conditions for the envelope function in multiband k.p model
We have derived general boundary conditions (BC) for the multiband envelope
functions (which do not contain spurious solutions) in semiconductor
heterostructures with abrupt heterointerfaces. These BC require the
conservation of the probability flux density normal to the interface and
guarantee that the multiband Hamiltonian be self--adjoint. The BC are energy
independent and are characteristic properties of the interface. Calculations
have been performed of the effect of the general BC on the electron energy
levels in a potential well with infinite potential barriers using a coupled two
band model. The connection with other approaches to determining BC for the
envelope function and to the spurious solution problem in the multiband k.p
model are discussed.Comment: 15 pages, 2 figures; to be published in Phys. Rev. B 65, March 15
issue 200
Systematic pathological component scores for skin-containing vascularized composite allografts
Clinical management of skin-containing vascularized composite allografts (VCA) requires accurate assessment of the graft status, typically based on skin biopsies. The Banff 2007 Working Classification proposed 4 grades of acute rejection, but did not score individual features or include vascular rejection. Here we report a systematic scoring system developed from MHC-mismatched porcine skin-containing VCA. Biopsies from 20 VCA, 9 autologous skin flaps and 9 normal skin were analyzed to optimize the methodology and set thresholds. The components quantified were: perivascular cells/dermal vessel (pc), perivascular dermal infiltrate area (pa), luminal leukocytes/capillary or venule (c), epidermal infiltrate (ei), epidermal apoptosis or necrosis (e), endarteritis (v), and chronic allograft vasculopathy (cav). To evaluate prognostic value, we scored a separate group of 28 serial biopsies from 8 recipients (4 that were ultimately accepted and 4 that rejected. Parameters on the initial biopsies predicting later graft rejection included pc (p < 0.02), pa (p < 0.03), ei (p < 0.0005), e (p < 0.003) and c (p < 0.005). Reproducibility between 2 pathologists blinded to clinical data was acceptable, with weighted kappa scores for pc (0.673), pa (0.399), ei (0.464), e (0.663), v (0.766), and c (0.642). This component scoring system can be adapted clinically, since human and porcine skin are highly similar. Vascular lesions in VCA are also highlighted in this system and could impact graft outcome. The component score approach complements Banff 2007 grades and will enable the establishment of clinically significant thresholds
Barriers to exercise in people with Parkinson disease
BACKGROUND: Exercise is known to reduce disability and improve quality of life in people with Parkinson disease (PD). Although barriers to exercise have been studied in older adults, barriers in people with chronic progressive neurological diseases, such as PD, are not well defined. OBJECTIVE: The purpose of this study was to identify perceived barriers to exercise in people with PD. DESIGN: The study had a cross-sectional design. METHODS: People who had PD, dwelled in the community, and were at stage 2.4 on the Hoehn and Yahr scale participated in this cross-sectional study (N=260; mean age=67.7 years). Participants were divided into an exercise group (n=164) and a nonexercise group (n=96). Participants self-administered the barriers subscale of the Physical Fitness and Exercise Activity Levels of Older Adults Scale, endorsing or denying specific barriers to exercise participation. Multivariate logistic regression analysis was used to examine the contribution of each barrier to exercise behavior, and odds ratios were reported. RESULTS: Three barriers were retained in the multivariate regression model. The nonexercise group had significantly greater odds of endorsing low outcome expectation (ie, the participants did not expect to derive benefit from exercise) (odds ratio [OR]=3.93, 95% confidence interval [CI]=2.08–7.42), lack of time (OR=3.36, 95% CI=1.55–7.29), and fear of falling (OR=2.35, 95% CI=1.17–4.71) than the exercise group. LIMITATIONS: The cross-sectional nature of this study limited the ability to make causal inferences. CONCLUSIONS: Low outcome expectation from exercise, lack of time to exercise, and fear of falling appear to be important perceived barriers to engaging in exercise in people who have PD, are ambulatory, and dwell in the community. These may be important issues for physical therapists to target in people who have PD and do not exercise regularly. The efficacy of intervention strategies to facilitate exercise adherence in people with PD requires further investigation
Comparative utility of the BESTest, mini-BESTest, and brief-BESTest for predicting falls in individuals with Parkinson disease: A cohort study
BACKGROUND: The newly developed Brief–Balance Evaluation System Test (Brief-BESTest) may be useful for measuring balance and predicting falls in individuals with Parkinson disease (PD). OBJECTIVES: The purposes of this study were: (1) to describe the balance performance of those with PD using the Brief-BESTest, (2) to determine the relationships among the scores derived from the 3 versions of the BESTest (ie, full BESTest, Mini-BESTest, and Brief-BESTest), and (3) to compare the accuracy of the Brief-BESTest with that of the Mini-BESTest and BESTest in identifying recurrent fallers among people with PD. DESIGN: This was a prospective cohort study. METHODS: Eighty participants with PD completed a baseline balance assessment. All participants reported a fall history during the previous 6 months. Fall history was again collected 6 months (n=51) and 12 months (n=40) later. RESULTS: At baseline, participants had varying levels of balance impairment, and Brief-BESTest scores were significantly correlated with Mini-BESTest (r=.94, P<.001) and BESTest (r=.95, P<.001) scores. Six-month retrospective fall prediction accuracy of the Brief-BESTest was moderately high (area under the curve [AUC]=0.82, sensitivity=0.76, and specificity=0.84). Prospective fall prediction accuracy over 6 months was similarly accurate (AUC=0.88, sensitivity=0.71, and specificity=0.87), but was less sensitive over 12 months (AUC=0.76, sensitivity=0.53, and specificity=0.93). LIMITATIONS: The sample included primarily individuals with mild to moderate PD. Also, there was a moderate dropout rate at 6 and 12 months. CONCLUSIONS: All versions of the BESTest were reasonably accurate in identifying future recurrent fallers, especially during the 6 months following assessment. Clinicians can reasonably rely on the Brief-BESTest for predicting falls, particularly when time and equipment constraints are of concern
Bayesian Methods for Exoplanet Science
Exoplanet research is carried out at the limits of the capabilities of
current telescopes and instruments. The studied signals are weak, and often
embedded in complex systematics from instrumental, telluric, and astrophysical
sources. Combining repeated observations of periodic events, simultaneous
observations with multiple telescopes, different observation techniques, and
existing information from theory and prior research can help to disentangle the
systematics from the planetary signals, and offers synergistic advantages over
analysing observations separately. Bayesian inference provides a
self-consistent statistical framework that addresses both the necessity for
complex systematics models, and the need to combine prior information and
heterogeneous observations. This chapter offers a brief introduction to
Bayesian inference in the context of exoplanet research, with focus on time
series analysis, and finishes with an overview of a set of freely available
programming libraries.Comment: Invited revie
Mitigating Complex Dust Foregrounds in Future Cosmic Microwave Background Polarization Experiments
archiveprefix: arXiv primaryclass: astro-ph.CO slaccitation: %%CITATION = ARXIV:1709.07897;%%archiveprefix: arXiv primaryclass: astro-ph.CO slaccitation: %%CITATION = ARXIV:1709.07897;%%archiveprefix: arXiv primaryclass: astro-ph.CO slaccitation: %%CITATION = ARXIV:1709.07897;%%P.B.’s research was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, California Institute of Technology, administered by Universities Space Research Association under contract with NAS
- …