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Abstract

Polarized Galactic foregrounds are one of the primary sources of systematic error in measurements of the B-mode
polarization of the cosmic microwave background (CMB). Experiments are becoming increasingly sensitive to
complexities in the foreground frequency spectra that are not captured by standard parametric models, potentially
affecting our ability to efficiently separate out these components. Employing a suite of dust models encompassing a
variety of physical effects, we simulate observations of a future seven-band CMB experiment to assess the impact
of these complexities on parametric component separation. We identify configurations of frequency bands that
minimize the “model errors” caused by fitting simple parametric models to more complex “true” foreground
spectra, which bias the inferred CMB signal. We find that: (a) fits employing a simple two-parameter modified
blackbody (MBB) dust model tend to produce significant bias in the recovered polarized CMB signal in the
presence of physically realistic dust foregrounds; (b) generalized MBB models with three additional parameters
reduce this bias in most cases, but non-negligible biases can remain, and can be hard to detect; (c) line-of-sight
effects, which give rise to frequency decorrelation, and the presence of iron grains are the most problematic
complexities in the dust emission for recovering the true CMB signal. More sophisticated simulations will be
needed to demonstrate that future CMB experiments can successfully mitigate these more physically realistic dust
foregrounds.
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1. Introduction

B-mode polarization of the cosmic microwave background
(CMB) arises from gravitational lensing by large-scale
structure and, possibly, from gravitational waves generated
during the inflationary epoch. Given the potential for
constraining several important aspects of fundamental physics,
such as the conditions of the very early universe and the sum of
the neutrino masses, the measurement of the B-mode signal is a
subject of intense focus for current and planned ground,
balloon, and space missions.

In addition to the cosmological signature, Galactic fore-
grounds such as dust and synchrotron emission are also able to
produce B-mode polarization. Disentangling the Galactic and
cosmological signatures is already a challenge for current
experiments, which have placed upper limits on the tensor-to-
scalar ratio r of ∼0.1. Achieving constraints on r of order 10−3,
as sought by proposed next-generation experiments such as
LiteBIRD (Matsumura et al. 2014) and CMB-S4 (Abazajian
et al. 2016) will require subtraction of the Galactic signal with
unprecedented accuracy.

Component separation in polarization can be significantly
more complex than in total intensity. Polarized intensities add
vectorially, with directions set by the interstellar magnetic field
in the case of dust and synchrotron emission. Changes in the
magnetic field direction along the line of sight coupled with
spatial variations in the polarization spectra can result in
different levels of cancellation/suppression of the polarized
signal and a rotation of the polarization angle with frequency
(e.g., Tassis & Pavlidou 2015). Thus, the observed polarized
emission at one frequency is an imperfect predictor of the
polarized emission at a different frequency, an effect termed
“frequency decorrelation.” Frequency decorrelation effects,

which arise whenever the foreground spectra have spatial
variations, are expected to be present at some level, and some
evidence for them has already been noted in the Planck data
(Planck Collaboration et al. 2017).
Frequency decorrelation poses a serious challenge for

component separation methods; template-based methods can
no longer rely on being able to factorize the frequency
dependence and spatial variation of the foregrounds, while
parametric spectral fitting methods require significantly more
complex signal models (e.g., Chluba et al. 2017) to account for
the extra spectral structure that is induced.
Complexities in the emission physics of dust can also be

amplified in polarization relative to total intensity. If the far-
infrared (FIR) dust emission arises from two distinct dust
components (e.g., silicate and carbonaceous grains) with
different polarization properties, the total and polarized dust
spectral energy distributions (SEDs) can differ significantly.
For example, while both components will contribute to the total
intensity signal, one may be significantly less polarized than the
other, resulting in far weaker polarized emission. Likewise,
magnetic dust grains may contribute negligibly in total
intensity at frequencies higher than the microwave, but emit
strong, polarized emission at lower frequencies (Draine &
Hensley 2013). These scenarios are also challenging for
component separation methods, which tend to assume
relatively simple spectral models, and extrapolate foreground
properties in the (much higher signal-to-noise) total intensity
channel into polarization.
The risks of improper dust modeling are well-documented:

on intermediate angular scales, the residual foreground
emission left after imperfect component separation can easily
mimic the cosmological B-mode signal (BICEP2 Collaboration
et al. 2014; BICEP2/Keck Collaboration et al. 2015), resulting
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in strongly biased cosmological parameter inferences. It is
therefore critical to the success of future CMB polarization
experiments that they can (a) model and separate Galactic dust
emission over a wide range of possible emission physics
scenarios, and (b) reliably identify situations in which the
modeling and subtraction are inadequate, and hence may bias
the recovery of the true CMB signal.

Some recent work has studied the ability of future
experiments to reliably recover the polarized CMB signal in
the face of the complexities we consider here. Armitage-Caplan
et al. (2012) found that neglecting the curvature in the dust
SED due to departure from a pure Rayleigh–Jeans spectrum
biased the recovered tensor-to-scalar ratio r high by s~1 . More
recently, Remazeilles et al. (2016) evaluated the robustness of
parametric component separation to multiple dust components
for a suite of proposed CMB satellites. They found that fitting
too simple a dust model was sufficient to bias r by more than
s5 while maintaining an acceptable goodness-of-fit criterion,
even for the most sensitive experiments. Similarly, Stompor
et al. (2016) found that fitting a single dust component in the
presence of multiple dust “layers” biased parametric comp-
onent separation at the D ~ -r 10 3 level. Kogut & Fixsen
(2016) considered dust SEDs with a distribution of dust
temperatures as well as SEDs based on two-level systems,
finding biases on r ofD ~ ´ -r 3 10 3. Poh & Dodelson (2017)
evaluated the impact of multiple dust components along the
line of sight aligned by different magnetic fields, finding that
naive extrapolations from 350 GHz to lower frequencies would
result in significant bias for  ´ -r 1.5 10 3.

In this paper, we consider the ability of future CMB
polarization experiments to mitigate dust contamination in a
much broader range of physically motivated scenarios. We
focus our investigation on parametric component separation
methods, which employ physical models of the frequency
dependence of each emission component to perform separation
pixel-by-pixel in the map domain (e.g., Planck Collaboration
et al. 2016a). This type of method produces maps of each
foreground component in addition to the CMB, enabling a wide
variety of Galactic science. It is also well-suited for
cosmological applications at large angular scales, such as
measuring the reionization peak, where techniques based on
spatial correlations can fail due to lack of modes (Remazeilles
et al. 2017). For higher ℓ applications ( ℓ 100), non-
parametric techniques will still need to be tested for robustness
against the model complexities discussed here.

We first assess which complications to the simplest models
lead to the greatest biases in the recovered CMB. Guided by a
physical understanding of dust emission, more sophisticated
models and techniques can be developed to mitigate these
biases. Second, by analyzing a large of set of frequency
configurations that could be employed in future experiments,
we evaluate what frequency coverage is most effective at both
mitigating bias and identifying poor model fits via poor
goodness-of-fit statistics.

This paper is organized as follows: in Section 2, we motivate
and describe the suite of foreground models used in this work;
in Section 3, we outline a “single-pixel” (i.e., frequency-space)
component separation method; we assess the ability of various
mission designs to accurately recover the input CMB as a
function of dust model complexity in Sections 4 and 5, and we
discuss the implications of this analysis for experiment design
and data analysis in Section 6.

2. Foreground Models

In this section, we provide details of all of the foreground
component models considered in this paper, with a particular
focus on a set of seven dust models that illustrate a range of
possible physical effects that would lead to more complex dust
spectra than are typically considered in CMB analyses.
In most of this study, we will work in units of CMB

brightness temperature. A blackbody of temperature TCMB emits
with a specific intensity of =n n ( )I B TCMB

CMB , where n ( )B T is
the Planck function and TCMB is taken to be 2.7255 K. A source
with specific intensity Iν has a CMB brightness temperature
DT , satisfying:
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where n=x h kTCMB and only the first-order terms are
retained. The foreground models presented in the following
sections are expressed in terms of specific intensities and
converted to CMB temperature units, mKCMB, for the analysis.
It is often convenient, particularly for visualizing the SEDs

of the emission components over a broad frequency range, to
employ the Rayleigh–Jeans brightness temperature TRJ, which
is related to the specific intensity at a given frequency
by n n= n( ) ( )T c I k2RJ

2 2 .
For polarization, we work with the Stokes parameters Iν, Qν,

and Uν, expressed as specific intensities which can then be
converted to the equivalent CMB or Rayleigh–Jeans brightness
temperatures. Throughout this work, we neglect any circular
polarization (i.e., Stokes =nV 0). The polarized intensity Pν

therefore satisfies = +n n n∣ ∣P Q iU . The polarization fraction pν
is defined as ºn n np P I .

2.1. Component Amplitudes

In the following sections, we describe models of the
frequency dependence of the Galactic foregrounds considered
in this work: thermal dust, synchrotron, anomalous microwave
emission (AME), and free–free. As we implement a “single-
pixel” analysis in which we fit a single representative
realization of the CMB and the foregrounds (see Section 3),
we must first determine the relative amplitudes of the various
components for a typical high-latitude sightline.
To do so, we are guided by the results of the Commander

component separation analysis (Planck Collaboration et al.
2016a). In total intensity, the Commander analysis produced
full-sky maps at 1° resolution pixellated at a HealPix (Górski
et al. 2005) =N 256side . In Figure 1 we plot the cumulative
distribution function (CDF) of the best-fit (posterior maximum)
amplitudes of thermal dust, synchrotron, free–free, and
spinning dust (AME) for all pixels with > ∣ ∣b 30 . As the
foreground brightness varies strongly with Galactic latitude,
the highest values observed in this sky cut give an indication of
the brightest foregrounds that need to be mitigated by an
experiment wishing to achieve 50% sky coverage.
At 353 GHz, the distribution of posterior maximum dust

intensities is m-
+23 K13

30
RJ (68% credible interval). For all of our

dust models, we adopt a Stokes I amplitude of 50mKRJ at
353 GHz, which is at the higher end of this range.
At 30 GHz, the distribution of best-fit synchrotron intensities

is m-
+19 K5

9
RJ, and we adopt a value of 30mKRJ. Likewise, the

AME amplitude distribution at 30 GHz is m-
+19 K11

21
RJ and we

adopt a value of 30mKRJ. Free–free emission is not detected
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over a large fraction of the high-latitude sky, as evidenced in
Figure 1. A total of 95% of pixels have a 30 GHz free–free
amplitude less than 41mKRJ, and so we adopt an amplitude of
30mKRJ. Given the difficulty of separating synchrotron, AME,
and free–free with the currently available low-frequency data,
we purposefully model these components as equally bright at
30 GHz in total intensity rather than adhere strictly to the
Commander CDFs.

The Commander analysis also extended to polarization,
producing full-sky =N 256side maps of polarized dust
and synchrotron emission at ¢10 and ¢40 resolution respec-
tively. We convert the Commander Qν and Uν maps
to Pν and plot the resulting histogram over all high-latitude
( > ∣ ∣b 30 ) pixels in Figure 1. The distributions of
dust and synchrotron polarized intensities are -

+2.7 1.5
3.1

and m-
+8.9 K4.6

6.8
RJ at 353 GHz and 30 GHz respectively.

Assuming a polarization angle of 22.5 for both dust and
synchrotron, we adopt m= =Q U 3.5 K353 GHz 353 GHz RJ and

m= =Q U 10 K30 GHz 30 GHz RJ for the dust and synchrotron,
respectively.

The Commander analysis assumed that the AME and free–
free are unpolarized, following both theoretical and observational
arguments which we outline in Sections 2.4 and 2.5. Likewise,
we assume these components are unpolarized.

Finally, for the CMB we adopt a temperature of 50mKCMB
and Stokes m= =n nQ U 0.6 KCMB, which are typical values
for ~ 1 scales. The adopted amplitudes for all emission
components are summarized in Table 1.
While these choices result in a representative, benchmark

realization of the foreground components, we note that the ratio
of component amplitudes is observed to vary strongly across the
sky (Planck Collaboration et al. 2016a). Detailed optimization
studies should explore a range of foreground realizations, which
is beyond the scope of the present analysis.

2.2. Thermal Dust

In this section, we define a suite of seven dust models that
exhibit a range of complex but physically motivated behaviors
that could prove challenging for parametric component
separation techniques. The dust models, and the parameters
that characterize them, are summarized in Table 2, and
representative SEDs are plotted in Figure 2.

2.2.1. Generalized Modified Blackbody

Dust grains absorb optical and UV photons and reradiate the
absorbed energy in the infrared. The FIR opacity of dust grains

Figure 1. Cumulative distribution function (CDF) of total (left) and polarized (right) intensities for each foreground component in the > ∣ ∣b 30 sky at =N 256side as
determined by the Commander analysis (Planck Collaboration et al. 2016a). We employ these CDFs to select representative amplitudes for each component, which
we summarize in Table 1.

Table 1
Assumed Amplitude and Spectral Parameters of the Sky Components in the Simulations, Based on the Distributions from Planck Shown in Figure 1

Component Ref. Freq. [GHz] I [mKRJ] Q [mKRJ] U [mKRJ] Spectral Parameters

CMB 30 50 0.6 0.6 L
Synchrotron 30 30 10 10 b = -1.2s

Free–free 30 30 L L b = -0.118ff

AME 30 30 L L n = 25 GHzpk

Thermal Dust 353 50 3.5 3.5 Various

3
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is often approximated as a power law in frequency,

k k
n
n

=n

b⎛
⎝⎜

⎞
⎠⎟ ( )2d

0
0

d

where k0 is the opacity at reference frequency n0. Assuming
this opacity law, the total intensity emitted at frequency ν by a
dust grain of temperature Td is

n
n

=n

b

n

⎛
⎝⎜

⎞
⎠⎟ ( ) ( )I A B T , 3d

d
I

d d
0

d

where Ad
I is a dimensionless amplitude parameter and

n ( )B T is the Planck function. For convenience, we
adopt n = 353 GHzd

0 .
The polarization of the dust emission depends on the angle Ψ

between the interstellar magnetic field (along which the grains
are aligned) and the line of sight, as well as the material
composition and shape of the emitting grains. Variations in the
magnetic field direction and grain properties along the line of
sight can further influence the polarization signal.

For a single dust grain of temperature Td and ignoring any
frequency dependence of the polarization fraction arising from
the frequency-dependence of its dielectric function, we can
approximate the polarized intensity as

n
n

=n

b

n

⎛
⎝⎜

⎞
⎠⎟ ( ) ( )P A B T , 4d

d
P

d d
0

d

where Ad
P is the specific polarized intensity at a reference

frequency nd
0 . Note that the frequency-independent factor Ysin2

is subsumed in the amplitude Ad
P.

As the Stokes parameters Qν and Uν are more fundamental
observables than Pν, we construct the amplitudes

g= ( )A A cos 2 5d
Q

d
P

d

g= ( )A A sin 2 6d
U

d
P

d

where  g p<0 d .
Let us now consider emission from an ensemble of grains. If

there are N distinct grain types, each with their own bd, Td, and
polarization angle gd, then the total and polarized intensities
from the ensemble are given by:
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where arg denotes the principal value of the argument function
with range p[ )0, 2 . We denote this model as a “generalized
modified blackbody” and employ it as a starting point for a
number of simple analytic models which we discuss in the
following sections.

2.2.2. Single-component Modified Blackbody

If all interstellar dust has the same bd (e.g., if all grains are of
the same composition) and same temperature Td (e.g., if all
grains are exposed to identical radiation fields), then the dust
emission may be modeled as a single-temperature modified
blackbody (MBB) described by Equations (7)–(9) with N= 1.
The polarization angle is frequency independent.
When simulating dust emission with this model, we adopt

b = 1.6d and Td=20 K, consistent with typical values used
to fit Planck data (Planck Collaboration et al. 2014a, 2016a).
To achieve the adopted 353 GHz total and polarized dust
intensities, we take = ´ -A 3.9 10d

I 6 and = =A Ad
Q

d
U

´ -2.8 10 7.
Note that this model is the most commonly used in

parametric dust component fits to CMB data, primarily due
to its simplicity—there are only two spectral parameters, bd and
Td, which are the same for the total intensity and polarized
emission. We refer to this model as MBB.

2.2.3. Two-component Modified Blackbody

In this model we assume that dust comes in two distinct
compositions (e.g., carbonaceous and silicate) with different bd
and Td. We further assume that these grains are aligned by the
same magnetic field and therefore have the same polarization
angle. Thus the total and polarized dust emission are given by
Equations (7)–(9) with N= 2, along with the constraint

+ = +( ) ( ) ( )A iA A iAarg arg , 11d
Q

d
U

d
Q

d
U

,1 ,1 ,2 ,2

Table 2
Summary of Dust Models

Model Equations Components Constraints

Modified blackbody (7)–(9) 1 L
Silicate + carbonaceous (7)–(9) 2 + = +( ) ( )A iA A iAarg argd

Q
d
U

d
Q

d
U

,1 ,1 ,2 ,2

MF15 (7)–(9) 2 + = +( ) ( )A iA A iAarg argd
Q

d
U

d
Q

d
U

,1 ,1 ,2 ,2

Cloud (7)–(9) 2 b b=d d,1 ,2

Silicate + Fe (7)–(9) 2 b = 0d,2 , =T Td d,1 ,2,

+ = - +( ) ( )A iA A iAarg argd
Q

d
U

d
Q

d
U

,1 ,1 ,2 ,2

HD (15)–(17) 2 L
HD with Fe (18)–(20) 2 L
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which enforces consistency between the polarization angles of
the two components. The resulting polarization angle is
therefore frequency independent.

When performing simulations with this model, we choose
two sets of parameters. For the first set, we consider a
physically motivated model intended to represent silicate and
carbonaceous grains. We choose grain temperatures of

=T 15d,1 K and =T 24d,2 K for silicate and carbonaceous
grains, respectively, in agreement with the steady-state
temperatures of m0.1 m grains in the model of B. Hensley
& B. T. Draine (2018, in preparation). Likewise, we employ
spectral indices of b = 1.6d,1 and b = 1.8d,2 . On the basis of
both observational and theoretical results, we assume the
carbonaceous grains are unaligned, and so have no net
polarization (Chiar et al. 2006; Hoang & Lazarian 2016).
Guided by the relative contributions of the silicate and
carbonaceous grains to the total infrared emission in the
model of B. Hensley & B. T. Draine (2018, in preparation),
we adopt º =f A A 0.25I d

I
d
I

,2 ,1 , º =f A A 0Q d
Q

d
Q

,2 ,1 , and

º =f A A 0U d
U

d
U

,2 ,1 , = ´ -A 3.5 10d
I
,1

6, and = =A Ad
Q

d
U

,1 ,1

´ -3.3 10 7 to achieve the desired total and polarized
intensities. We refer to this model as SilCar.

For the second set, we employ the best-fit parameters of an
empirical two-component model developed to fit the observa-
tions of Galactic FIR dust emission. Both Finkbeiner et al.
(1999), using FIRAS, IRAS, and DIRBE data, and more
recently Meisner & Finkbeiner (2015), using Planck data,
found a statistically significant preference for two-component
models over single-component models when fitting thermal
dust emission. The best-fit parameters of the Meisner &
Finkbeiner (2015) model are =T 9.75d,1 K, =T 15.70d,2 K,
b = 1.63d,1 , b = 2.82d,2 , and =A A 5.35d

I
d
I

,1 ,2 . To achieve a
353 GHz dust brightness temperature of 50mKRJ, we set

= ´ -A 9.5 10d
I
,1

6 and = ´ -A 1.8 10d
I
,2

6. For polarization
we adopt = = ´ -A A 6.7 10d

Q
d
U

,1 ,1
7 and =Ad

Q
,2 = ´A 1.3d

U
,2

-10 7 to yield a total polarized intensity of m5 KRJ at 353 GHz,
and the same ratio between components as in total intensity.
We refer to this model as MF15.

Note that we will sometimes use the definitions bD ºd

b b-d d,2 ,1 and ºf A AX d
X

d
X

,2 ,1 (where =X I Q U, , ) in our
discussion of two-component modified blackbody (2MBB)
models.

2.2.4. “Cloud” Model

In the models discussed so far, the polarization angle has
been constant with frequency. There are many scenarios in
which this will not be the case, such as when both the magnetic
field direction and the dust spectrum are varying along the line
of sight.
To model this effect, we consider the simple case in which

there are two clouds along the line of sight. The dust in each
cloud is identical in composition (i.e., has the same bd), but is
heated to different temperatures. Further, the clouds differ in
magnetic field direction, yielding different polarization angles.
In this case, the total and polarized intensities are given by
Equations (7)–(9) with N= 2 and b b=d d,1 ,2. Since the dust
SEDs of the clouds are different, the polarization angle is
frequency dependent.
When simulating data with this model, we choose dust

temperatures of =T 15d,1 K and =T 20d,2 K, well within the
observed range of dust temperature variations (e.g., Planck
Collaboration et al. 2014a, 2016a; Meisner & Finkbeiner
2015). We assume that the two components are comparably
bright in intensity, with = = ´ -A A 2.4 10d

I
d
I

,1 ,2
6. The

adopted polarization amplitudes are = ´ -A 1.2 10d
Q
,1

7,
= ´ -A 2.1 10d

U
,1

7, = ´ -A 2.4 10d
Q
,2

7, and = ´A 1.1d
Q
,1

-10 7, corresponding to polarization angles of 30 and 12 for
components 1 and 2, respectively. The magnetic fields in the
clouds are therefore somewhat, but not extremely, misaligned,
providing an indication for the typical magnitude of this effect.
We refer to this model as Cloud.

2.2.5. Modified Blackbody with Iron Grains (Fe)

Iron is a major constituent of interstellar dust by mass, some
of which may be in the form of ferromagnetic nanoparticles
(Draine & Hensley 2013). Indeed, embedded metallic iron

Figure 2. Input SEDs for the various dust models in Stokes I and Q. For most models, Stokes U is nearly identical to Q. The dashed lines indicate where Q is negative.
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nanoparticles have been found in putative interstellar grains
collected in the solar system by Stardust (Westphal et al. 2014)
and Cassini (Altobelli et al. 2016). The unique polarization
signature of magnetic dipole emission potentially renders these
grains an important contaminant for CMB studies—the SED is
relatively flat (in CMB temperature units) at low frequencies
(see Figure 2). We will consider the case of ferromagnetic
inclusions embedded in larger non-magnetic grains.

We can model the composite grains in the context of the
generalized modified blackbody model. The non-magnetic matrix
of the grain can be described by a simple single-temperature
modified blackbody, while the iron inclusions can be modeled as
a second modified blackbody of the same temperature but with
b = 0 and polarization angle rotated by 90 with respect to the
non-magnetic matrix (Draine & Hensley 2013). Thus, the total
and polarized intensities for such composite grains are given by
Equations (7)–(9) with N= 2, b = 0d,2 , and

+ = - +( ) ( ) ( )A iA A iAarg arg . 12d
Q

d
U

d
Q

d
U

,1 ,1 ,2 ,2

We note that when magnetic dipole emission from the iron
grains becomes larger than the electric dipole emission from
the matrix, the polarization angle flips from gd,1 to
g g p= + 2;d d,2 ,1 the two types of emission are polarized
perpendicular to one another.

When simulating data with this model, we employ Td=
20 K and b = 1.6d , as the presence of iron inclusions does not
substantially affect the dust temperature. At the reference
frequency of 353 GHz, we assume that the emission from the
iron is 5% of that of the silicate matrix in both intensity
and polarization, and so =A A 0.05d

I
d
I

,2 ,1 and =A Ad
Q

d
Q

,2 ,1

= -A A 0.05d
U

d
U

,2 ,1 . This provides a good approximation to
the more physical model of B. Hensley & B. T. Draine (2018,
in preparation) (see Figure 2). To achieve the adopted
353 GHz total and polarized dust intensities in Table 1, we
take = ´ -A 3.7 10d

I
,1

6 and = = ´ -A A 2.9 10d
Q

d
U

,1 ,1
7. We

refer to this as the Fe model.

2.2.6. A Physical Dust Model (HD and HD+Fe)

The analytic modified blackbody models presented in the
previous sections simplify considerably the underlying dust
physics. In this section we consider dust models that allow for
much greater complexity and which may better reflect the
challenges posed by the true dust foreground.

The modified blackbody model of dust emission assumes
that the dust opacity κ averaged over all dust sizes and
compositions has a frequency dependence that is well-
described by a power law of variable index bd. In a more
physical treatment of dust, we compute the dust opacity as a
function of grain size for various grain materials based on their
complex dielectric function. We designate the opacity of a
grain of composition j and radius a at frequency ν as kn j a, , .

In the modified blackbody model, the dust emission is
characterized by a single temperature Td. In reality, grains of
different sizes and compositions will attain different tempera-
tures even when exposed to the same radiation field. Further,
very small grains are poorly described by a single temperature.
A single optical or UV photon can excite these grains to
temperatures exceeding 1000 K, whereas most of the time the
grain remains in its very cold ground vibrational state. Hence, it
is important to consider the full temperature probability
distribution for such grains.

Accounting for these complexities, the total specific intensity
from a population of dust grains is

ò òå k=n
c

n n⎜ ⎟⎛
⎝

⎞
⎠ ( ) ( )I da

dm

da
dT

dP

dT
B T , 13

j

i

j a
j a

, ,
, ,

where we have summed over all of the grain compositions j,
(dmj/da)da is the mass in dust of composition j with radius
between a and +a da, χ is a parameter governing the strength
of the radiation field heating the dust, and (dP/dT)dT is the
probability of a grain of composition j and radius a in a
radiation field χ having temperature between T and +T dT.
The radiation field is assumed to be a scalar multiple χ of the
spectrum of the local interstellar radiation field derived by
Mathis et al. (1983), which we set to c = 1 here.
We employ Equation (13) directly in the context of a physical

dust model. By analyzing dust emission and extinction, both
total and polarized, from ultraviolet to microwave wavelengths,
B. Hensley & B. T. Draine (2018, in preparation) developed a
model based on graphitic and silicate grains capable of
reproducing the observations. By adopting their opacities, size
distributions, and temperature distributions, we can reduce
Equation (13) to just a few key parameters:

å c=n n ( ) ( )I A I j, , 14
j

d j
I
,

where the Ad j
I
, set the relative contributions of the various grain

components as well as the overall amplitude, and the cn ( )I j,
are precomputed quantities based on the physical modeling.
Just as the physical models provide precomputed cn ( )I based

on realistic grain materials, so too can they provide cn ( )P as
long as the grain shapes are specified. In addition to the
intrinsic grain properties, the observed Qν and Uν depend on
the relative orientation of the interstellar magnetic field and
both the line of sight and the reference polarization axes. We
subsume these angles into the amplitude parameters Ad

Q and Ad
U.

In this work, we explore two such physical dust models. In
the first, we assume grains are either carbonaceous or silicate
and with no embedded iron inclusions. The total and polarized
intensities in this model are

= +n n n ( )I A I A I 15d
I

d
IHD

,1
sil

,2
car

= +n n n ( )Q A Q A Q 16d
Q

d
QHD

,1
sil

,2
car

= +n n n ( )U A U A U , 17d
U

d
UHD

,1
sil

,2
car

where the “sil” and “car” superscripts indicate silicate and
carbonaceous grains, respectively. The frequency dependence
of Iν and Pν for each grain type is precomputed in the context
of the B. Hensley & B. T. Draine (2018, in preparation) grain
model. The relative abundance of silicate and carbonaceous
grains is fixed to the default employed by this model and
normalized to yield the desired 353 GHz total intensity of
50mKRJ. We note that in this model the carbonaceous grains
are unaligned and therefore do not produce polarized emission
(i.e., = =n nQ U 0car car ). Therefore, =A Ad

Q
d
U

,1 ,1 are adjusted to
yield the desired 3.5 μK polarized intensity at 353 GHz. We
refer to this as the HD model.
Finally, we consider a physical model in which the silicate

grains have embedded iron inclusions that constitute 5% of the
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grain volume. Denoting this grain type as “sil+Fe,” we have

= +n n n
+ + ( )I A I A I 18d

I
d
IHD Fe

,1
sil Fe

,2
car

= +n n n
+ + ( )Q A Q A Q 19d

Q
d
QHD Fe

,1
sil Fe

,2
car

= +n n n
+ + ( )U A U A U . 20d

U
d
UHD Fe

,1
sil Fe

,2
car

We note that the signs of n
+Q sil Fe and n

+U sil Fe, and thus the
polarization angle, depend on the relative importance of
emission from the silicate and iron components. Therefore,
this model has a frequency-dependent polarization fraction. We
set the parameters of this model in an analogous way to the HD
model, assuming the default relative abundances of silicate and
carbonaceous grains, assuming that the carbonaceous grains
produce unpolarized emission, and normalizing to the desired
50 and 5mKRJ at 353 GHz in intensity and polarization,
respectively. We refer to this model as HD+Fe.

2.3. Synchrotron

As relativistic electrons spiral about the interstellar magnetic
field, they emit photons at radio wavelengths known as
synchrotron radiation. The spectrum of this radiation depends
on the energy spectrum of the electrons. Over the frequency
range of interest, the specific intensity is often approximated as
a power law:

n
n

=n

b⎛
⎝⎜

⎞
⎠⎟ ( )I A , 21s

s
I

s
0

s

where As
I is the specific intensity at a reference frequency n s

0

and bs is the power-law index.
This parameterization can be extended to polarization by

assuming that the polarized intensity spectrum has the same
spectral shape as the intensity spectrum:

n
n

=n

b⎛
⎝⎜

⎞
⎠⎟ ( )P A , 22s

s
P

s
0

s

where As
P is the specific polarized intensity at a reference

frequency n s
0, taken to be 30 GHz. In this model, we assume the

synchrotron polarization angle gs is independent of frequency
and is equal to the dust polarization angle at 353 GHz.

To produce the adopted total and polarized synchrotron
intensities, we adopt =A 830s

I Jy sr−1, = =A A 280s
Q

s
U

Jy sr−1, and b = -1.2s .
We note that the synchrotron model presented here is a

simplification, as it neglects known complexities such as
curvature in the synchrotron SED and line-of-sight effects (see
Section 2.2.4). We defer investigation of the impact of these
complexities to future work, as we focus the present analysis
principally on dust emission.

2.4. Anomalous Microwave Emission

Interaction with gas atoms in the interstellar medium causes
dust grains to rotate, and grains possessing an electric dipole
moment radiate as they rotate (Draine & Lazarian 1998).
Ultrasmall grains (radius a 10 Å) have rotational frequencies
of order 30 GHz and thus contribute to Galactic microwave
emission. The spinning dust mechanism is believed to be
responsible for the AME, a prominent dust-correlated

component of the Galactic microwave emission
between ~ –10 40 GHz.
While the AME spectrum has been measured in detail in

some Galactic clouds (Planck Collaboration et al. 2014c), the
SED of the diffuse Galactic AME appears to peak at lower
frequencies and is much more poorly constrained (Miville-
Deschênes et al. 2008; Planck Collaboration et al. 2016a).
Further, cloud-to-cloud variations suggest large variability in
the AME SED, with peak frequencies typically ranging from
20–35 GHz, although as high as ;50 GHz (Planck Collabora-
tion et al. 2014c). Theoretical constraints on the spinning dust
SED are also weak due to sensitivity of the SED to conditions
in the ambient interstellar medium, with different AME SEDs
predicted for, e.g., the warm and cold neutral media (Draine &
Lazarian 1998; Ali-Haïmoud et al. 2009). The unknown grain
size, charge, and dipole moment distributions lead to further
uncertainties in the shape of the AME SED (Hensley &
Draine 2017).
In light of both the empirical and theoretical uncertainties,

we seek a simple parameterization of the AME SED which can
capture variability in the amplitude and peak frequency. For the
purposes of this work, we adopt the functional form proposed
by Draine & Hensley (2012) which includes a parameter
governing the peak frequency npk of the spectrum:

n
n

n n= -n

⎛
⎝⎜

⎞
⎠⎟ [ ( ) ] ( )I A exp 1 . 23IAME

AME
0
AME

2

pk
2

The AME has yet to be detected definitively in polarization,
though stringent upper limits ( p 1%) have been placed in
some specific regions (Dickinson et al. 2011; Planck
Collaboration et al. 2016c; Génova-Santos et al. 2017) and
for the large-scale diffuse emission (Kogut et al. 2007; Planck
Collaboration et al. 2015). Theoretical arguments suggest that
energy quantization in ultrasmall grains dramatically sup-
presses the conversion of rotational to vibrational energy,
preventing the grains from aligning with the interstellar
magnetic field. If this mechanism is acting, the AME will be
negligibly polarized ( ~ -p 10 8, Draine & Hensley 2016). We
therefore adopt an unpolarized AME component for the
purposes of this work on both empirical and theoretical
grounds.
To produce the adopted total 30 GHz AME intensity of

30mKRJ, we take n = 25 GHzpk and =A 1300I
AME Jy sr−1.

2.5. Free–Free

Free–free emission arises from the acceleration of electrons
due to the electric fields of ions. The free–free spectrum is well-
known both empirically and theoretically, being well-approxi-
mated by a simple power law in the optically thin limit:

n
n

=n

-⎛
⎝⎜

⎞
⎠⎟ ( )I A , 24Iff

ff
0
ff

0.12

where A I
ff is the amplitude at a reference frequency n0

ff , taken to
be 30 GHz.
Free–free emission is inherently unpolarized due to its

isotropic nature. However, near the edges of HII regions,
Thomson scattering can induce a low level of polarization,
estimated to be at the ∼10% level when observing in the
Galactic plane at high resolution (Keating et al. 1998; Macellari
et al. 2011). At the relatively low resolutions analyzed here, the
polarization is expected to be much smaller. Indeed,
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empirically, the free–free polarization appears to be less than
1% (Macellari et al. 2011; Planck Collaboration et al. 2016c).
Thus, for the purposes of this work, we neglect a potential free–
free contribution to the total polarized emission.

To produce the adopted total 30 GHz free–free intensity of
30mKRJ, we take =A 830I

ff Jy sr−1.

2.6. Other Emission Components

The foregoing sections, while extensive, have not been
exhaustive of the numerous emission mechanisms in the
frequency range of interest. Line emission (notably CO), the
cosmic infrared background, and zodiacal light will all
contribute to the sky signal observed by a real experiment.
As these components are subdominant in intensity and are
expected to be negligibly polarized, we neglect them for the
purposes of this analysis.

2.7. Summary

We illustrate the SEDs of the emission components
employed in this work in Figure 3. In our analysis, all
components are kept fixed to these SEDs with the exception of
the dust emission. The various dust model SEDs are
summarized in Figure 2.

3. Component Separation Simulations

To understand how different types of dust contamination can
affect the recovery of CMB temperature and polarization maps,
we performed a large number of simulations of single sky
pixels across multiple bands. The simulations covered a wide
range of assumptions about dust physics and instrumental
design, and included multiple (∼100) noise realizations per
dust model and band configuration, so that the statistical
properties of the component separation procedure could be
studied. In this paper, we consider a single foreground removal
algorithm that uses a Bayesian model fitting procedure on
multi-band, single-pixel data. Single-pixel foreground fitting is
one of the most conservative foreground removal strategies, as

it does not require any assumptions to be made about the spatial
distribution of the foreground components. The need to
constrain multiple foreground degrees of freedom per pixel is
also an important driver of the many-band designs of several
future CMB experiments.
In this section, we describe the details of the single-pixel

simulations and the Markov chain Monte Carlo (MCMC)
model fitting procedure that was subsequently applied to them.

3.1. Single-pixel Simulations

For each dust model, we simulated 100 single-pixel data
vectors with different noise realizations over a grid of
minimum and maximum frequencies. A seven-band instru-
mental design was assumed in all cases, with minimum and
maximum frequencies of n = ( )20, 30, 40min GHz and
n = ( )300, 400, 500, 600, 700, 800max GHz respectively. The
bands were spread across the frequency range with a constant
logarithmic interval between them. No bandpass integration
was performed, so we have essentially assumed a delta-
function bandpass at all frequencies.
The noise at each frequency was obtained by interpolating

the CoRE+ Stokes Q noise curve from Remazeilles et al.
(2016), shown in Figure 4. We assumed a log-linear extension
of the noise curve at frequencies lower than 60 GHz, and a
circular, 1 FWHM beam in each frequency channel. This
angular resolution should be sufficient for typical B-mode
analyses that target the low-ℓ primordial B-mode signal,
although higher-resolution experiments have the advantage of
being able to estimate the CMB lensing contribution more
effectively (Smith et al. 2012). The Q and U polarization
channels were assumed to have equal noise levels, with the
Stokes I noise rms lower by a factor of 2 . The noise was
assumed Gaussian and uncorrelated between bands. These
noise levels are typical of proposed space-based CMB
polarization experiments and so provide a benchmark for our
analysis. Joint optimization of frequency coverage and the
signal to noise in each frequency band is beyond the scope of

Figure 3. Input SEDs for the CMB, synchrotron, dust (MBB model), AME, and free–free in Stokes I and Q. Stokes U, not shown, is identical to Stokes Q for all
components. AME and free–free are assumed to be unpolarized.
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this study, but we note that the details of the results presented
here would change with the adoption of a different noise curve.

To enable a fair comparison, the model for each component
of the sky signal was kept the same between noise realizations
and choices of minimum/maximum frequency. The assump-
tions for each of the non-dust components are summarized in
Table 1; I, Q, and U amplitudes were chosen to be
representative of the recovered amplitudes from the Planck
2015 Commander–Ruler marginal foreground maps (Planck
Collaboration et al. 2016a), smoothed to 1 , and with a sky cut
of  ∣ ∣b 30 , as discussed in Section 2.1. Spectral parameters
were chosen to be broadly consistent with current constraints
from the literature. While most of these parameters are
expected to vary across the sky (some of them significantly),
the chosen values should be representative of a “typical” pixel
after excluding the Galactic plane.

Note that we assumed the CMB contribution to be free of
lensing contamination, which we would not be able to estimate
from a single pixel anyway, and that polarization leakage and
other instrumental effects can be ignored.

For the thermal dust component, seven different models
were studied, as described in Section 2.2 and summarized in
Table 2. The total intensity and polarization amplitudes at
353 GHz were chosen to be the same across all models. The
adopted spectral parameters are motivated by the physical
effects under study and by models in the literature, as detailed
in Section 2.2.

3.2. Single-pixel Foreground Fitting Procedure

With the simulated data in hand, we applied a Bayesian
foreground model fitting procedure to each data vector to
recover the CMB I, Q, and U amplitudes. This uses an MCMC
method to sample from the joint posterior of the amplitude and
spectral parameters of all of the component models. The CMB
amplitudes can then be obtained by marginalizing over all the
other parameters.

The sampling procedure is set up as follows. We first
construct a Gaussian likelihood, of the form

 q q q~ - - --( ) ( ( )) ( ( )) ( )d s d sNlog
1

2
, 25T 1

where the data vector d consists of temperature values in each
frequency band and polarization. The combined signal vector,
s, is constructed by summing the contributions from each
component model in each frequency band and polarization for
a given set of parameters, q. The noise covariance, N, is
assumed diagonal, and is identical to the noise covariance that
was used when generating the simulations.
We are interested in the effects of assuming the wrong form

for the dust model, i.e., what happens when we fit a
phenomenological model to one of the more complicated
physically motivated dust models described in Section 2.2. For
each of the input models described above, we fit two models to
the simulated data: the simple MBB model, and the generalized
2MBB model in which both components are assumed to have
the same polarization angle. The MBB model has often been
used in analyses of CMB data, and only has two free spectral
parameters, bd and Td. The 2MBB model is expected to better
encapsulate complex dust physics, at the cost of introducing
several extra parameters. For all other foreground components,
we fit the same model that was used to generate the simulated
data vector, with all relevant parameters being included in the
sampling process.
For each simulated data vector and choice of dust model to

be fit, we used the emcee affine-invariant ensemble sampler
(Foreman-Mackey et al. 2013) to return samples from the joint
posterior, using the likelihood from Equation (25). All
parameters were taken to have uniform priors over relatively
broad ranges, given in Table 3. The sampler was run for 10,000
steps from each of 100 walkers, with a burn-in of 8000 steps
being discarded from each. This burn-in period was determined
to be sufficient for both the MBB and 2MBB fits, following a
series of convergence studies that checked sensitivity of
the means and standard deviations of the CMB amplitudes to

Figure 4. Assumed Stokes Q noise rms as a function of frequency for a future
CMB polarization experiment. The U noise rms is identical, and the I noise rms
is smaller by a factor of 2 . We base the noise curve on the COrE+
(Extended) specifications from Remazeilles et al. (2016) (black points), with a
log-linear extrapolation to higher and lower frequencies. The minimum/
maximum frequencies that were used are marked on the curve as red vertical
lines.

Table 3
Prior Ranges of Various Model Parameters

MBB Min. Max.

Td 16 24
bd 1.4 1.8

2MBB Min. Max.

Td,1, Td,2 5 30

bd 1.1 1.8
bD d −1.8 1.8

fI 0 1
fQ=fU −2 2

Other Min. Max.

bs −1.6 −0.8
n peak

AME 15 35

AI
X 0 ¥

Note. Temperatures are in K and frequencies in GHz; all other spectral
parameters are dimensionless. Parameters not included in this table were
assumed to lie in the range -¥ ¥[ ], . Note that we set fQ=fU to reduce the
number of free parameters in the 2MBB model.
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burn-in length. Long burn-in periods were needed to allow the
walkers time to find the maximum likelihood region on what
were sometimes quite complex likelihood surfaces that
exhibited multiple degeneracies. Note that, due to the long
correlation times in cases where there were strong degen-
eracies, some of the chains may not have formally converged.
Further convergence tests suggest that this is not a serious
problem, as only small shifts in the posterior means (a few
percent of a standard deviation) were observed when running
much longer chains with 100,000 samples per walker. This is
subdominant to the error on the posterior mean due to the finite
number of noise realizations that were used. Also note that we
do not thin the chains, relying instead on combining the
samples from the 100 walkers to reduce sample correlation
effects.

Each worker was started from an initial position with a small
random displacement from the input parameter values used in
the simulation. This was done to ensure that the “correct” CMB
and foreground parameters would at least be explored in case of
multi-modal distributions or parameter degeneracies. The
exception was the parameters of the dust model used in the
fits, which were set to the same values no matter the input
model (but which at least started with the correct amplitude at
353 GHz).

After running and processing the MCMC chains, we
calculated a set of summary statistics from the CMB amplitude
parameter chains, i.e., the recovered CMB I, Q, and U
amplitude pdfs marginalized over all other parameters. This
was done for each of the 100 noise realizations for each pair of
input and fitting dust models. The distributions of these
summary statistics are analyzed in detail in the next two
sections. From the MCMC chain for each noise realization, we
kept the mean and standard deviation of each parameter, as
well as its value at the maximum a posteriori probability
(MAP), which is coincident with the point of minimum c2.
These were used to calculate the (error-normalized) bias from
the true (input) value of each parameter,

q
s

q q
s

D
º

-

q q

¯
( ), 26true

where θ is some parameter, the bar denotes either the mean or
MAP estimate from the MCMC chain, and sq is the marginal
standard deviation of that parameter estimated from the MCMC
chain. In the rest of the paper, we study the distributions of
these summary statistics over the 100 noise realizations.
Summary statistics that run over noise realizations are denoted

by angle brackets, for example qáD ñ denotes the mean of the
bias over the 100 noise realizations.

4. Joint Temperature and Polarization Analysis

In this section, we perform an example analysis that uses
both temperature (Stokes I) and polarization (Stokes Q and U)
data to constrain the CMB and foreground models. Naively,
one would expect the inclusion of an I channel to improve the
CMB polarization constraints, as it should help to constrain
parameters of the foreground models that are common to I and
Q/U. As we will see here, however, this is not necessarily the
case due to the complexity of the low-frequency temperature
foregrounds.
In Figure 5, we show the result of fitting CMB and four

foreground components (synchrotron, free–free, AME, and
dust) to temperature plus polarization data over seven
frequency bands for two different choices of nmin, up to a
nmax of 500 GHz. In this example, we used a simple MBB
model as both the input dust model and the model for the fitting
procedure. Since the models to be fitted are the same as the
input models, we expect to be able to recover the input model
amplitudes and parameters without bias. Figure 5 shows that
this is more or less the case for a band configuration with
n = 20 GHzmin , but that there is a significant bias for several
components when n = 30 GHzmin .
This is caused by a degeneracy between several of the low-

frequency foreground components, which have similar spectral
behaviors around ∼30 GHz (see Figure 3). Without at least
one band below 30 GHz, there is insufficient information to
reliably distinguish between synchrotron, free–free, and AME.
Incorrect inferences about these components can then lead to
them being under- or over-subtracted at higher frequencies,
leaving residuals that systematically bias the CMB. In the cases
shown in Figure 5, the bias on the CMB Q and U amplitudes is
relatively small ( s~0.2 ), but this is just the simplest case. For
more complex dust models, the bias can be more substantial.
Figure 6 compares the bias on the CMB Q amplitude for all
seven dust models, for analyses that use temperature and
polarization (T+P) information, versus polarization informa-
tion alone. In four out of the seven cases, the bias is
significantly larger for the T + P analysis—and this is for the
relatively optimistic scenario where n = 20 GHzmin . Note that
such biases would likely be identifiable, however, as the
degeneracies would be apparent in the MCMC chains; the bias
shown in Figure 5 is based on a summary statistic, which
obscures the existence of degeneracies.

Figure 5. Bias in the maximum likelihood estimates of the Stokes I amplitudes of five components, for a fit to temperature + polarization data containing an MBB
dust component, plus CMB, AME, free–free, and synchrotron. Statistics are shown for 200 noise realizations, with n = 500 GHzmax , and two different values of nmin.
The dashed lines show the mean bias over all 200 realizations. If nmin is too high, degeneracies between the low-frequency components result in biased amplitude
estimates.
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We draw two conclusions from this. First, an experiment
using joint temperature + polarization foreground fits will
likely require frequency coverage below 30 GHz to help break
the low-frequency degeneracy. In the absence of low-frequency
bands, one can use an amalgamated low-frequency foreground
component instead of separate physical synchrotron, free–free,
and AME models, as was done in Planck Collaboration et al.
(2014b). This is not an unreasonable approach, but runs the risk
of introducing subtle model errors, especially if information
from the “combined” low-frequency foreground in temperature
is used to make inferences about its polarization properties.

Second, if the aim of an experiment is to recover the
polarized CMB as accurately as possible, then the value of the
additional foreground information provided by the I channel is
likely outweighed by the increased complexity of the low-
frequency temperature foregrounds. This is especially the case
if one considers that we have used quite simplistic models for
the synchrotron and AME components here, ignoring potential
complications such as spectral curvature, shape of the AME
SED, etc.

Additionally, we have assumed the optimistic case that the
spectral parameters of the synchrotron and dust components are
the same in both temperature and polarization. However, the
Planck observations indicate that the dust spectral index bd is
systematically different in temperature and polarization (Planck
Collaboration et al. 2015). To account for this, one could
decouple the spectral parameters used in the I and Q/U
channels for these components, but then the I channel provides
no extra spectral information about the polarized foregrounds.
As such, an analysis that uses only polarization information,
without trying to model the temperature components, is likely
to be simpler and more robust. This is the strategy that we
pursue throughout the rest of the paper.

5. Polarization-only Analysis

In the following sections, we describe the results of fitting
the MBB and 2MBB models to the seven dust models

described in Section 2.2, using polarization information alone.
In particular, we focus on the bias that is induced in the
recovered CMB Q and U amplitudes due to fitting an
“incorrect” dust model to the data, and whether the
unsuitability of the fitting model can be identified by inspecting
the c2 goodness-of-fit statistic. While large biases are
unwelcome in any situation, it is most problematic if one
cannot identify that the results are probably biased and thus
take some corrective action (like re-fitting the data with a more
complex dust model). As such, models that are strongly biased
but still yield low c2 values are the most dangerous.
Our main results for the bias and c2 are shown in Figures 7

and 8. Numerical values of the bias, c2, and CMB signal-to-
noise are given for a few example band configurations in
Figure 9.

5.1. Modified Blackbody Models

We begin by fitting the MBB and 2MBB models to
simulations that use the simple MBB model described in
Section 2.2.2 as the input dust component. As we illustrate in
the top panels of Figures 7 and 8, both models recover the input
CMB with minimal bias, as expected, with little dependence on
the band configuration. The analysis techniques and summary
statistics employed therefore appear unbiased and robust. We
note however that the extra parameters introduced in the 2MBB
model come at the expense of reduced signal to noise on the
recovered CMB amplitudes (see Figure 9).
Having performed these consistency tests, we now turn to

the two 2MBB models discussed in Section 2.2.3: the model
with silicate and carbonaceous grains (SilCar) and the one
based on the empirical fits of Meisner & Finkbeiner (2015)
(MF15). When fitting either model with the MBB fitting
function, the recovered CMB amplitudes are biased by 1–2σ,
depending on the band configuration.
In principle, the SilCar model should be perfectly described

by the MBB fitting function in polarization only, as the
carbonaceous grain component is unpolarized, leaving only a
single polarized MBB component associated with the silicate
grains. Nevertheless, the fits are biased. This is due to our
choice of dust temperature prior. Guided by previous studies
fitting the FIR dust emission, we naively selected a uniform
prior on the dust temperature of Î [ ]T 16, 24 Kd . This is a
considerably broader range than was used in the Planck
Collaboration et al. (2016a) analysis for example, which
assumed a Gaussian prior on Td with mean 23 K and a standard
deviation of 3 K. Our prior is appropriate when fitting the SED
in total intensity, but if only the lower-temperature component
is polarized, as is the case here (since silicate grains are thought
to run cooler than carbonaceous grains; Li & Draine 2001),
then it is not appropriate for fitting the polarized SED. This is
illustrated clearly in Figure 10, in which the maximum
a posteriori dust temperatures for each noise realization are
shown to cluster at the prior bound.
A similar effect is observed when fitting MF15 with an MBB

model. The dust component that dominates at low frequencies
has a temperature of 9.75 K, far below the prior bound, and so
the same clustering effect occurs at the boundary (see Figure 10).
The polarization spectrum is also complicated by the presence of
a second component that dominates at high frequencies. The
inadequacy of the MBB fit is seen in both the bias in the
recovered CMB and, to a lesser degree, in slightly elevated c2

values. The bias is reduced when high frequencies, where the

Figure 6. Comparison of the mean bias of the recovered CMB Q amplitude
between temperature + polarization and polarization-only analyses. The points
shown are for fits with an MBB dust model, and a band configuration with
n n,min max=20,500 GHz. The errorbars show the standard deviation of the
bias, while the solid diagonal line marks where the two analyses would have
equal bias. Most models show a tendency toward a greater degree of bias when
temperature information is included.
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complexities induced by the second dust component are most
pronounced, are excluded from the analysis.

These problems would be identifiable from inspection of the
MCMC chains, and so could be mitigated in a real analysis by
expanding the priors. However, this does serve to highlight the
risks of using temperature information to infer dust polarization
properties. In particular, the dust polarization at CMB
frequencies may be dominated by a dust component of
significantly lower temperature than that responsible for most
of the total intensity at frequencies near the dust peak.
Therefore, dust temperature priors based on the total intensity

data may be misleading. Further, at the noise levels expected in
future experiments, the effects of the dust temperature on the
shape of the polarized dust SED (i.e., departures from a pure
Rayleigh–Jeans spectrum) are significant enough to impact the
recovered CMB even at low frequencies. Joint fits to total and
intensity and polarization must be done with care, and models
employed in polarization-only fits must be flexible enough to
accommodate dust properties significantly different than what
are observed in total intensity.
We now turn to fits of these models with a 2MBB model. As

illustrated in Figures 7 and 8, the recovered CMB amplitudes

Figure 7. Mean bias of the Stokes Q and U CMB amplitudes (x axis) vs. the median of the minimum c2 (y axis) over 100 noise realizations for simulations with
several different dust models. The size and color of the points denote different choices of nmin and nmax respectively (see the key below), while the left two and right
two panels show results for when MBB and 2MBB models are used in the fits respectively. All fits were performed by fitting CMB + synchrotron + dust components
to polarization data only. The biases are calculated using the maximum a posteriori probability (minimum c2) values for the CMB amplitudes for each noise
realization.
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are much less biased. This is expected, as the SilCar and MF15
models are both fully described by the 2MBB model (which
also includes broader priors on its parameters). In the case of
MF15, the fits are not completely unbiased. We discuss in more
detail the biases that can arise when fitting with the 2MBB
model in Section 5.5.

Our conclusion from these results is that future CMB
experiments will be sensitive to the additional complexity caused
by multiple superposed dust components. Multi-component
models of interstellar dust emission are well-motivated by
empirical fits to the FIR dust SED (e.g., Finkbeiner et al. 1999;

Meisner & Finkbeiner 2015; Zheng et al. 2017) and by current
dust models (e.g., Draine & Li 2007; Siebenmorgen et al. 2014;
B. Hensley & B. T. Draine 2018, in preparation; Jones et al.
2017), and so forthcoming experiments should ensure that they
can robustly remove multi-component dust contamination,
particularly cases in which the components have significantly
different properties.

5.2. Models with Line-of-sight Effects

Although the dust models discussed in Section 5.1 each
featured multiple dust components, these components were all

Figure 8. Bias in Stokes Q and U CMB amplitudes over 100 noise realizations, for the same dust models and fitting procedure as in Figure 7. The left two and right
two panels again show the results for when MBB and 2MBB models are used to fit the dust component. The dashed vertical lines show the median bias. These results
are shown for n n,min max=30,500 GHz.
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assumed to be aligned by the same magnetic field. In general,
the Galactic magnetic field is not uniform along the line of
sight, and polarized emission from dust aligned by a field of
one direction will add in a vectorial way with emission from
dust aligned by a field having a different direction. If the dust
properties, such as composition or temperature, are also
changing along the line of sight, then the frequency depend-
ence of the resulting polarized emission can be complex and
imperfectly correlated between frequencies. As demonstrated
by Tassis & Pavlidou (2015) and Poh & Dodelson (2017),
failure to account for these line-of-sight effects can lead to
biases in CMB fits.
To investigate this in greater detail, we employ the Cloud

dust model described in Section 2.2.4, in which the dust
emission is assumed to arise from two clouds with different
dust temperatures (15 and 20 K) and magnetic field direc-
tions. As a result of the components having different
polarization angles and SEDs, the ratio of Qν to Uν varies
with frequency.

Figure 9. Summary statistics over 100 noise realizations for 3 selected band configurations, for all 7 input models and both fitting models. The summary statistics are
the mean of the error-normalized bias for the CMB Q amplitude; the median of the minimum χ2; and the mean signal-to-noise ratio of the CMB Q amplitude.

Figure 10. Bias in the maximum a posteriori CMB Q amplitude and dust
temperature for MBB fits to polarization-only data, with n n,min max=
30,800 GHz. The gray band shows the region excluded by a prior on Td.
Each point shows the result for one of the 100 noise realizations.
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The results of fitting the Cloud model with a simple MBB
model are presented in Figures 7 and 8. While all frequency
configurations are biased to a degree, those with the highest-
frequency bands suffer the highest bias. This is because the
dust SEDs of the two clouds differ due to their temperature, and
temperature effects are most pronounced at high frequencies.
Thus, the more the frequency coverage extends to high
frequencies, the less the simple model is able to account for
the complexity of the emission. However, this is compensated
by a dramatically increased c2. Indeed, although models with
lower nmax are less biased, they have more acceptable c2 and
thus pose a greater potential risk to the analysis.

The effect of the frequency-dependent polarization angle is
illustrated in another way in Figure 11, which plots the bias in
Q against the bias in U over the 100 noise realizations for the
band configuration with n = 30 GHzmin and n = 500 GHzmax .
When the data are simulated using the MBB or HD models, the
biases on the recovered CMB Q and U are roughly equal in
each noise realization. For the fits to the Cloud model,
however, the Q and U biases are related by a line of different
slope and intercept, despite the input CMB signal having
Q=U at all frequencies. The Cloud model therefore directly
introduces errors on the recovered CMB polarization angle.

The results of fitting the Cloud model with the more complex
2MBB model are also shown in Figures 7 and 8. As we noted
in Section 3.2, this model assumes that the two dust
components are aligned by the same magnetic field (i.e.,
fQ=fU) and thus have the same polarization angle. Due to this
assumption, the 2MBB model is unable to account for the
frequency-dependent polarization angle that arises in the Cloud
model. Allowing ¹f fQ U would solve this issue, at the expense
of introducing one more free parameter—see Figure 12 for a
demonstration. As with the MBB fits, the ( fQ=fU) 2MBB fits
recover CMB amplitudes that are biased for all frequency
configurations, with those having higher nmax also having the
largest c2. Overall, the bias is less than in the MBB fits due to
the greater flexibility of the model.

While dust models with multiple components have been
considered in the context of upcoming CMB experiments, the
components are almost always assumed to be aligned by the
same magnetic field and thus have the same polarization angle
(e.g., Armitage-Caplan et al. 2012; Remazeilles et al. 2016;
Thorne et al. 2017). However, even for the simple case of a
small temperature difference between clouds, we find that line-
of-sight effects can induce non-negligible biases in the
recovered CMB polarization at the noise levels considered.
Additional complications, such as more severely misaligned
clouds or different bd values in each cloud, would exacerbate
this effect.

Planck has observed evidence of spatial variation in the
spectrum of the polarized dust emission (Planck Collaboration
et al. 2017). Depending on the magnitude of the effect,
component separation methods relying on persistent spatial
correlation of the dust across frequencies may be severely
impacted, rendering parametric methods all the more important.

Models such as the Cloud model analyzed here can help test
these analysis methods against plausible line-of-sight effects,
which we have demonstrated can be at levels of concern for
CMB science.

5.3. Models Based on Microscopic Dust Physics

The models discussed so far have been instantiations of
the generalized modified blackbody model described in
Section 2.2.1. While these models provide a means of
investigating a number of physical effects with convenient
analytic functions, they likely fail to account in detail for the
intrinsic frequency dependence of the dust emission arising
from the long-wavelength properties of amorphous materials.
Indeed, laboratory studies have demonstrated that interstellar
dust analogues can have diverse and complex opacity laws in
the FIR that are not well described by simple power laws
(Agladze et al. 1996; Demyk et al. 2017a, 2017b). Further, the
total microwave emission from dust arises from grains of
different sizes, temperatures, and compositions. To evaluate the
impact of these complications, we employ the physical dust
model of B. Hensley & B. T. Draine (2018, in preparation)
(HD), which was described in Section 2.2.6.
We begin by fitting the HD model simulations with the

simple MBB model. When high frequencies are included
( n 700max GHz), the recovered CMB is biased by more than
s1 , but the c2 values are generally elevated, making it easy to
identify the poor fit. The remaining configurations have
relatively low bias ( s<0.5 ) and acceptable c2 values. The
silicate opacity adopted by B. Hensley & B. T. Draine (2018, in
preparation) is not a perfect power law, and thus fitting it as a
power law over a wide frequency range induces modeling
errors. Additionally, the dust SED is more sensitive to the
underlying dust temperature distribution at higher frequencies.
Thus, the model failures are more severe for those configura-
tions with coverage extending to high frequencies.
Fits to the HD model with the 2MBB fitting function are

presented in the right panels of Figures 7 and 8. In this case, all
frequency configurations achieve an acceptable c2 goodness of
fit, but those with the highest-frequency bands remain
significantly biased. Thus, while the extra degrees of freedom

Figure 11. Bias of the CMB Q and U amplitudes for 100 noise realizations
with three different input dust models. A simple MBB model was used to fit the
data in all three cases. The results shown are for n n,min max=30,800 GHz, with
polarization-only data.
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provided by the 2MBB model allow a better fit to be obtained,
the inferred parameters are not accurate, and give a misleading
picture of the underlying set of components. While having
bands at high frequencies is often useful for identifying model
errors like this, as seen previously for the Cloud model
(Section 5.2), it also requires a reliable parametric model that is
valid over a large range of frequencies. The 2MBB model fails
in this respect, as it cannot reproduce the non-ideal behavior of
the dust opacity in the HD model. Experiments employing
high-frequency bands must therefore ensure that their analysis
techniques are robust to this effect, as there is a significant risk
that it will silently bias the recovered CMB amplitudes.

5.4. Models with an Iron Grain Component

Metallic iron nanoparticles may be a significant component
of interstellar dust with strong emissivity in the microwave
(Draine & Hensley 2013; B. Hensley & B. T. Draine 2018, in
preparation). This component is potentially problematic for
CMB experiments due both to its relatively flat spectrum and
its polarization signature. In particular, as metallic iron
inclusions emit magnetic dipole radiation, their emission is
polarized orthogonally to that of the grain in which they are
embedded. Therefore, iron inclusions can induce a frequency-
dependent change in the dust polarization fraction. We explore
their effects in the contexts of two models: one in which the
iron component is modeled as a simple graybody (i.e., b = 0;d
see Section 2.2.5) which we denote “Fe,” and a more physical
model which also incorporates magnetic resonance effects
(B. Hensley & B. T. Draine 2018, in preparation, see
Section 2.2.6), which we denote “HD + Fe.”

In Figure 7, we present the results of fitting the Fe model
with both the MBB (left) and 2MBB (right) models. In both
cases and for all frequency configurations, the fits are biased by
more than s1 . This is not surprising, as neither model can
account for the two orthogonal polarization angles contributing
to the total emission. More disconcerting, however, is the
overall goodness of the fits in all cases, despite the strong bias.
The flat spectrum of the iron grains is readily mimicked by the
CMB, leading to substantial bias in the recovered CMB
amplitudes.

These effects are illustrated more clearly in Figures 13 and 14,
which present the posterior distributions for select model
parameters and the best-fit component SEDs, respectively, for
an MBB fit to the Fe model with n = 30 GHzmin and n =max
500 GHz. Figure 13 shows that the chains have converged on a
seemingly good best-fit model, and that the model parameters
are well-determined, with no degeneracies apart from the usual
b - Td d degeneracy. Similarly, Figure 14 shows that the total
SED of the best-fit model (blue line) provides an excellent fit to
the data, with only a slight deviation from one data point near
80GHz. Nevertheless, the posterior excludes the true CMB Q
amplitude with high significance. This occurs because the decay
and sign change of the dust SED induced by the iron component
at low frequencies cannot be modeled by the MBB component
used in the fits, but is readily compensated by a reduction in
CMB amplitude and a shift in the synchrotron spectral index. In
fact, with this choice of fitting model, there is no solution that
can simultaneously recover the correct CMB amplitudes while
also producing a good fit to the data—the assumed MBB dust
model is just too inflexible at low frequency. This degeneracy
renders iron grains a potentially pernicious foreground for
parametric component separation methods, as large biases can be
induced without leaving any tell-tale signs, such as a poor
goodness of fit.
In the bottom left panel of Figure 7, we present the results of

fitting the HD + Fe model with the MBB model. In this case,
we find that configurations with n 600 GHzmax are somewhat
biased ( s1 ) while having low c2 values. In contrast, the two
configurations with the highest nmax have essentially no bias but
higher c2. These latter configurations have fewer frequency
bands covering the region where the iron emission and the
CMB are both significant, and thus the degeneracy between the
CMB and the magnetic emission is less severe. However, by
having more bands dominated by dust emission that is more
complicated than the simple MBB parameterization, the
goodness of fit is poorer than for configurations with more
bands at lower frequencies. In general, the biases are less than
observed in the case of the Fe model as the iron component in
this model contributes a smaller fraction of the total polarized
signal (see Figure 2).
Finally, in the bottom right panel of Figure 7, we present the

results of fitting the HD + Fe model with the 2MBB fitting
function. All frequency configurations have a similar and
acceptable c2. However, those with high nmax are significantly
biased, whereas the bias is smaller for those experiments
concentrated at lower frequencies. The extra degrees of
freedom introduced by the 2MBB fit allow much, but not all,
of the complexity of the HD + Fe model to be absorbed. Those
experiments with high frequencies must correctly model the
transition from the dust-polarized emission being dominated by
the silicate component to being dominated by the iron
component. This cannot be described as the sum of two
modified blackbodies having the same polarization angle. In
contrast, the low-frequency emission dominated by the iron
inclusions can be well-described by a modified blackbody and
thus subtracted more effectively. Any residual modeling errors
at higher frequencies can be compensated by the second dust
component while inducing only minimal bias at frequencies
where the CMB dominates.
Iron grains pose a substantial challenge to component

separation due to a spectrum that is degenerate with the
CMB and their unique polarization signature. Sufficiently

Figure 12.Mean bias in the CMB Q amplitude and median of the minimum c2

for 2MBB fits to a Cloud input model, with fQ=fU (circles) and ¹f fQ U

(triangles). The colors denote nmax, as in Figure 7; only the n = 30 GHzmin
points are shown.
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flexible models are required to fit this emission, but the
additional complexity must be balanced against an increased
ability to fit bad models and still achieve good fits. This
problem can be mitigated by increasing the number of
frequency bands.

5.5. Causes of Bias in the 2MBB Fits

As discussed above, some of the models return biased results
even when the significantly more flexible 2MBB model is used
to fit the dust. This is not particularly surprising for the HD and
HD + Fe models, which are more complicated than a simple
superposition of modified blackbodies (meaning that model
errors are expected), while our decision to set fQ=fU means
that the frequency decorrelation effects in the Cloud model
cannot be fully captured. Nevertheless, there are two models
that still produce significant biases even though the 2MBB
model has the freedom to reproduce them exactly. These are
the MF15 and Fe models, which result in s~ –0.2 0.8 and

s~ –1.0 1.5 biases respectively, but always with acceptable c2

values.
One potential cause of this behavior is the presence of

degeneracies between dust model parameters. There is a well-
known degeneracy between dust temperature and spectral
index even in the MBB case, as illustrated in Figure 13. The
more complicated 2MBB parameter space also supports several
additional degeneracies, since changes in the parameters of one
of the constituent MBB components can often be compensated
by changes in the other. As such, entirely different choices of
2MBB parameters can sometimes give almost exactly the same
SEDs. If one considers that there is also substantial freedom
available in the fits from the CMB and synchrotron
components, then it is clear that the parameter space in this
fitting problem is likely to be quite complex, with the posteriors
possibly exhibiting multiple local maxima. The risk of this
happening is even greater for input models which have spectral
features similar to the SEDs of other components (e.g., the flat
low-frequency part of the Fe SED mimics the CMB). The
existence of multiple maxima is problematic; while the correct,

Figure 13. Posterior distributions of selected CMB, synchrotron, and dust parameters for an MBB fit to an Fe input model, for a single noise realization with
n n,min max=30,500 GHz. The blue lines show the input values of parameters (where appropriate).
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unbiased CMB amplitude may be found in one maximum,
other maxima could give a strongly biased result, with no easy
way to choose which one is correct.

We do not see obvious multi-modality in the bias histogram
of Figure 8, however, and obtain similarly biased results when
the chains are started at exactly the correct input parameter
values. There is therefore a persistent preference for the
incorrect, biased parameter values in some of the 2MBB fits.
The recovered best-fit values can change significantly when
different prior ranges are chosen for some of the parameters,
however. For example, MCMC fits to the MF15 model with the
same noise realization but using different prior ranges for bd
resulted in very different best-fit values for the CMB Q
amplitude. In our tests, we found biases ranging from s0.3 for
b Î [ ]1.4, 1.7d , to s1.1 for b Î [ ]1.4, 1.8d , with results in
between for different choices of minimum/maximum.

Based on this sensitivity to the priors on some parameters,
we suspect that the real issue is that the flat priors we have
chosen on the spectral parameters are actually informative. This
effect has been pointed out previously in the context of the
foreground component separation problem by Eriksen et al.
(2008). While flat priors are properly uninformative for linear
parameters in the model (e.g., amplitudes or additive
constants), they are informative for the nonlinear spectral
parameters such as bd, bD d, Td,1, and Td,2, i.e., some values of
these parameters are preferred over others. This can result in
biased posterior distributions. When the posterior has multiple
maxima, the effect of an informative prior could be enough to
single out one of the biased maxima as the global maximum,
disfavoring the “true” maximum.

It should be possible to mitigate this effect by using a “Jeffreys
prior,” which is proportional to the square root of the determinant
of the Fisher matrix. This choice of prior is uninformative even
for nonlinear parameters. However, we defer a more detailed
study of how to avoid these biases to future work.

5.6. Signal-to-noise Optimization

So far we have focused on how different foreground
modeling assumptions and band specifications affect the

likelihood that the recovered CMB polarization will be biased,
and whether the bias can be identified. These factors also have
an important effect on the sensitivity of the measurements.
Since component separation can never be performed perfectly
due to the presence of instrumental noise, it will always result
in some residual foreground signal being left in the estimated
CMB map. This acts as an additional noise term, typically
reducing the signal-to-noise ratio compared with an “ideal”
scenario with no foregrounds. The component separation
procedure can also affect the recovered signal in other ways,
such as by over-subtracting the foregrounds (and therefore
suppressing the true CMB signal), or by over-fitting, resulting
in an artificial reduction in the noise level. As we have seen
above, the effectiveness of the component separation procedure
can depend strongly on the minimum and maximum frequen-
cies of the bands that are available.
Some example signal-to-noise ratio (S/N) statistics are

shown in Figure 9, for three different band specifications and
the two different fitting models. There is a clear dependence on
the fitting model, with the MBB fits resulting in S/Ns that can
be factors of several larger than in the 2MBB fits. This can be
understood by counting degrees of freedom—since the 2MBB
model has several more parameters than the MBB, most of the
information available in the data is being used to constrain
those degrees of freedom instead of beating down the noise on
the CMB amplitudes. In other words, marginalizing over more
nuisance parameters (in this case, parameters of the dust model)
reduces the precision with which the CMB signal can be
recovered. This is problematic: while simple MBB models are
unable to model complex dust scenarios with sufficient
accuracy, the more successful 2MBB models are considerably
more complex, and result in a significant reduction in
sensitivity to the CMB signal. A potential solution is to
include several more bands in the instrument design, but we
have not considered this possibility here.
Band configurations with higher nmax have a slight tendency

to result in larger S/Ns. This is primarily because the dust
signal increases with frequency, and so one can gain a better
handle on at least some of the dust parameters by increasing
nmax. This is not always the case, however, as model errors
caused by the increasing complexity of the dust spectra with
frequency can result in the CMB signal being systematically
underestimated, reducing the S/N. A similar effect can also be
seen at low frequency for the Fe model, which has a flattened
spectrum below ∼100 GHz that introduces a degeneracy with
the primary CMB. Degeneracies can also lead to systematic
over-estimates of the CMB amplitude, which probably explains
why fitting a simple MBB model to the HD model results in a
higher S/N than when fitting the MBB model to itself.
As noted previously, increasing nmax can reduce the risk of

bias in some scenarios, while increasing it in others. As such,
there is not really an “optimal” band configuration that is robust
against any plausible dust complexity. This conclusion carries
through when one also considers the S/N—the optimal band
configuration depends on what the true dust model is, which we
do not know. For a given model the S/N is only mildly
sensitive to nmax, however, suggesting that future experiments
should focus on finding configurations that reduce bias first,
and then optimize for S/N as a secondary concern.

Figure 14. SEDs of the CMB, synchrotron, and Fe dust components, for the
input model (gray) and posterior mean values of the fitting parameters shown in
Figure 13 (red). The total SEDs are shown in black and blue respectively, while
the simulated data are shown as points. The vertical gray lines show the
location of each band.
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5.7. Interpretation of Bias Statistics

In order to study a wide range of possible instrumental
configurations and dust scenarios (each with a large set of noise
realizations), we have restricted ourselves to a single-pixel
analysis. The lack of full-sky simulations means that we are
unable to translate our findings into implications for measure-
ments of r, the tensor-to-scalar ratio. This is left for future
work, which will be able to consider a more restricted set of
scenarios informed by the findings in this paper.

Nevertheless, we can make some simplistic statements about
the possible effects of the biases that we have identified on a
cosmological parameter analysis. Comparing the most idealistic
case—MBB fits to a true MBB dust model—with the other
scenarios, we see that the expected S/N on the polarized CMB
does not change by much except for in the case of the Fe model
(see Section 5.6). As such, the basic sensitivity to r is not
expected to change by much compared to the simulated MBB
component separation analyses that have been performed
previously (e.g., Alonso et al. 2017). The problem in this case
is the bias, however. For the 2MBB fits, the S/N per pixel is
generally at least a factor of 2 worse, which translates to a factor
of 4 on the CMB power spectrum.

It is difficult to estimate the effect of the bias without making
maps of the residuals, as the contamination of the B-mode
signal depends on the pattern of the residuals on the sky, i.e.,
how much of the residual is in B-modes as opposed to
E-modes. Still, a bias of s1 per pixel means that the power in
residual foregrounds is comparable to ∼1/(S/N)2 ≈ 1/52 of
the power in the CMB polarization on pixel scales. We used
pixels of size ~ 1 , corresponding to ~ℓ 200, where the CMB
EE power is m»D 1 K200

EE 2. If one third of the power of the
foreground residuals is in B-modes (Planck Collaboration et al.
2016b), and they have an angular power spectrum similar to the
dust itself ( ~ -D ℓℓ

0.5), this would translate to a B-mode
contamination of order m~0.1 K2 in angular power around the
reionization feature at ~ℓ 5. This is about three orders of
magnitude larger than the CMB BB power if = -r 10 2. While
we caution against taking this back-of-the-envelope estimate
too seriously, typical biases of s1 per pixel would clearly be a
serious matter for forthcoming CMB polarization experiments.

Finally, we note that the precision of our determinations of
the mean bias is limited by a couple of effects, of roughly
similar magnitude. The first is the limited number of noise
realizations that were used to estimate the mean. For a Gaussian
random variable, the standard error on the mean scales like
s N , where N is the number of realizations. We therefore
expect an error on the mean bias of s~0.1 for the standard
choice of 100 noise realizations. (The number of realizations
could be increased, but this would be computationally
expensive—the full set of results presented here required
several days of wall clock time on 7×64 cores of a shared
cluster.) Second, we have used the MAP estimate of the CMB
Q and U amplitudes to define the bias, as discussed in
Section 3.2. While this seems like the most sensible quantity to
use, we could have also chosen other summary statistics, such
as the mean. Figure 15 shows how the mean bias changes
depending on whether the mean or MAP estimates are used for
the bias definition. The difference between the two is
around s–0.1 0.5 .

6. Discussion and Conclusions

In this paper, we studied the ability of future CMB
polarization experiments to remove foreground contamination
that includes realistic, physically motivated dust components.
Until recently, most studies have assumed that galactic dust
emission in the microwave band can be well-described by a
simple modified blackbody form with only two spectral
parameters. There are many reasons to expect that this may
not be the case, however. In Section 2 we enumerated some of
the possibilities based on recent ab initio attempts to model
Galactic dust. These include the following:

1. Separate silicate and carbonaceous dust populations that
have significantly different SEDs in temperature and
polarization, so that a single MBB model (with spectral
parameters that are the same in the Stokes I, Q, and U
channels) cannot provide a good description.

2. Models with line-of-sight effects (“cloud”), where the
superposition of multiple dust clouds along the line of
sight, each with different SEDs and polarization angles,
adds complexity to the polarization spectrum, while
leaving the total intensity unchanged.

3. The presence of ferromagnetic iron grains, which give
rise to magnetic dipole emission that produces flat, CMB-
like dust SEDs at low frequencies.

4. More complex “physical” dust models, based on model-
ing the detailed properties (e.g., size and temperature
distributions) and relative abundances of different types
of dust grains.

We found that these more realistic dust models can cause
significant complications for attempts to remove dust fore-
ground emission and therefore recover the true polarized
CMB signal. In particular, biases in the CMB Q and U
amplitudes can easily be larger than one standard deviation
per 1° pixel when simple MBB models are fitted to
polarization-only data. These biases can often be identified
by the enlarged residuals (poor c2 fits) that they cause, with
some important exceptions. For instance, employing MBB

Figure 15. Mean bias in the CMB Q amplitude over 100 noise realizations,
shown for two different bias definitions, plotted against the median of the
minimum c2. The two bias definitions use the mean (circles) and maximum
a posteriori (crosses) values of the marginal posterior distribution for Q from
each noise realization. The results are shown for all seven input dust models,
assuming polarization-only MBB fits with n n,min max=30,700 GHz.
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fits, we found that silicate + carbonaceous, MF15 (Meisner &
Finkbeiner 2015), and iron-bearing (Fe) dust models can result
in s~ –1 2 biases per pixel while still returning apparently
good fits. This is dangerous, even if a good fraction of the
residual dust contamination can be removed (e.g., by fitting an
angular power spectrum template for the residual during
cosmological parameter estimation).

This situation improves somewhat when a more sophisti-
cated two-component MBB model is used. This can model a
much wider range of dust physics, including the cloud, iron-
bearing, and silicate + carbonaceous scenarios mentioned
above, at the cost of introducing three or four additional
parameters for a polarization-only analysis, depending on
whether the polarization angle is allowed to change with
frequency. There are several instances in which the recovered
CMB amplitudes remain biased, however. For the Cloud and
HD models, the bias can be avoided by restricting the analysis
to a relatively low maximum frequency, n 400 GHzmax . This
is not a general solution, however: some models, like MF15
and especially Fe, remain significantly biased while still
producing a good fit to the data (i.e., low c2), regardless of
the choice of minimum and maximum frequency. This is a
serious cause for concern, as the bias would potentially be
difficult to detect. Additionally, the 2MBB parameter space is
more complicated than for MBB, and so extra care is needed to
handle degeneracies, multi-modality, and biasing due to
informative priors.

Contrary to expectations, using temperature data to augment
the polarized foreground fits was not helpful even when
making the simplifying assumption that the components have
the same spectral parameters in both temperature and
polarization. We explored this effect in Section 4, where we
found that the additional complexity of the low-frequency
temperature foregrounds (i.e., including AME and free–free
emission) gives rise to degeneracies that have a knock-on effect
on the CMB, causing small biases even when the correct
(input) dust model is used for the fits. These biases can be
mitigated somewhat by including frequency channels below
∼30 GHz, which help to break degeneracies between the low-
frequency temperature components. We note, however, that our
assumed AME and synchrotron models are highly idealized,
neglecting, for instance, the line-of-sight effects explored in the
dust emission which are equally applicable for the low-
frequency foregrounds. Multiple sub-30 GHz bands will likely
be required to account for the additional spectral degrees of
freedom needed to provide a more realistic description of these
components.

We did not consider possible spatial variations of foreground
spectral parameters in this paper. Instead, we fixed the input
parameter values to what should be reasonably typical values at
intermediate-to-high latitudes. Future work will consider the
effects of spatial variations, in particular frequency decorrela-
tion arising from line-of-sight effects (i.e., due to clouds with a
range of different SED parameters being averaged into one
beam pointing). Similarly, by performing only a single-pixel
analysis, we have excluded the possibility of using morpho-
logical information to break degeneracies and identify biases.
Dust models that leave significant residuals while still having
apparently reasonable goodness-of-fit statistics are certainly
dangerous in a single pixel context, but could give rise to
residuals with tell-tale morphological signatures that are easier

to identify. A full-sky analysis will be needed to understand
whether this is the case or not.
Our conclusions are as follows:

1. A single-temperature modified blackbody model of dust
emission, even with spatially varying spectral parameters,
does not span the range of possible dust physics to which
future CMB experiments will be sensitive. We have
provided a library of physically realistic dust models in
Section 2.2 that covers a variety of potential complexities.
Some subset of these can be used to probe important dust
physics effects, such as frequency decorrelation and the
presence of ferromagnetic iron grains.

2. High-quality multi-band data are needed to properly
constrain the complex foregrounds in Stokes I at low
frequencies. Even in the case of idealized low-frequency
foregrounds considered in this work, frequency bands
below 30 GHz are required to successfully disentangle
the contributions of synchrotron, AME, free–free, and the
CMB in total intensity. Curvature in the synchrotron
SED, variations in the AME SED, and line-of-sight
effects are all expected in real data and would exacerbate
these degeneracies.

3. Polarization-only analyses using a generalized two-
component MBB (2MBB) model are the most robust
fitting options that we considered, and should be regarded
as a definite improvement to MBB in future analyses. The
2MBB models can still result in model errors and biases,
however. Restricting the analysis to relatively low
maximum frequencies, n ~ –200 500 GHzmax can reduce
the risk of bias in many scenarios, as some dust
complexities become more severe at high frequencies.
On the other hand, we found that high-frequency bands
( n 500 GHz) can be critical for identifying poor model
fits in other cases that result in biases on the recovered
CMB amplitudes. A detailed study of these trade-offs
should be undertaken in the context of specific proposed
experiment designs. In particular, future work should
examine the information gained by increasing the number
of frequency channels.

4. The 2MBB model can be further improved by allowing
the two dust components to be polarized with different
polarization ( ¹f fQ U in our notation). Although it
introduces an extra parameter into the fit, this more
general model is better able to capture the line-of-sight
effects that can lead to frequency decorrelation.

The Python code and data files for the summary statistics
calculated as part of this analysis are available to download
fromhttp://philbull.com/singlepixel/.
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