1,026 research outputs found

    Tn-Seq Analysis Identifies Genes Important for Yersinia pestis Adherence during Primary Pneumonic Plague

    Get PDF
    Following inhalation, Yersinia pestis rapidly colonizes the lung to establish infection during primary pneumonic plague. Although several adhesins have been identified in Yersinia spp., the factors mediating early Y. pestis adherence in the lung remain unknown. To identify genes important for Y. pestis adherence during primary pneumonic plague, we used transposon insertion sequencing (Tn-seq). Wild-type and capsule mutant (Δcaf1) Y. pestis transposon mutant libraries were serially passaged in vivo to enrich for nonadherent mutants in the lung using a mouse model of primary pneumonic plague. Sequencing of the passaged libraries revealed six mutants that were significantly enriched in both the wild-type and Δcaf1 Y. pestis backgrounds. The enriched mutants had insertions in genes that encode transcriptional regulators, chaperones, an endoribonuclease, and YPO3903, a hypothetical protein. Using single-strain infections and a transcriptional analysis, we identified a significant role for YPO3903 in Y. pestis adherence in the lung and showed that YPO3903 regulated transcript levels of psaA, which encodes a fimbria previously implicated in Y. pestis adherence in vitro. Deletion of psaA had a minor effect on Y. pes-tis adherence in the lung, suggesting that YPO3903 regulates other adhesins in addition to psaA. By enriching for mutations in genes that regulate the expression or assembly of multiple genes or proteins, we obtained screen results indicating that there may be not just one dominant adhesin but rather several factors that contribute to early Y. pestis adherence during primary pneumonic plague

    Correspondence in Quasiperiodic and Chaotic Maps: Quantization via the von Neumann Equation

    Full text link
    A generalized approach to the quantization of a large class of maps on a torus, i.e. quantization via the von Neumann Equation, is described and a number of issues related to the quantization of model systems are discussed. The approach yields well behaved mixed quantum states for tori for which the corresponding Schrodinger equation has no solutions, as well as an extended spectrum for tori where the Schrodinger equation can be solved. Quantum-classical correspondence is demonstrated for the class of mappings considered, with the Wigner-Weyl density ρ(p,q,t)\rho(p,q,t) going to the correct classical limit. An application to the cat map yields, in a direct manner, nonchaotic quantum dynamics, plus the exact chaotic classical propagator in the correspondence limit.Comment: 36 pages, RevTex preprint forma

    Coda wave attenuation tomography in Northern Morocco

    Get PDF
    In this study we focused on seismic attenuation (1/ Q) tomography in Northern Morocco. For this purpose, two different models are employed: The Single Backscattering model hypothesis of Aki and Chouet (1975) to calculate values of Coda Q (Q) and the Back-projection technique of Xie and Mitchell (1990) to estimate lateral variation in Q via a tomographic inversion. For this investigation, the Coda Q method is applied to a number of 94 local earthquakes with a magnitude between Ml=0.7 and Ml=4. The digital seismograms of these earthquakes were recorded during the year 2008 by both local temporary and permanent broadband seismic station network deployed in Northern of Morocco. The Q quality factor values have been computed at central frequencies 0.75, 1.5, 3, 6 and 12 Hz. The lapse time windows are restricted to 30s in order to sample the earth's crust only. The Q results indicate that strong frequency dependence follow a power law for the entire area. The preliminary results of seismic Coda Q attenuation tomography shows a dependence at each frequency band, between seismic attenuation and the geology structure units in the study area, especially in the region of Al Hoceima and the eastern part of the Rif which are characterized by high attenuation values due to active faults area, while low attenuation values are seen in the west and the south of the Rif in high frequencies.Peer Reviewe

    Collisional equilibrium, particle production and the inflationary universe

    Get PDF
    Particle production processes in the expanding universe are described within a simple kinetic model. The equilibrium conditions for a Maxwell-Boltzmann gas with variable particle number are investigated. We find that radiation and nonrelativistic matter may be in equilibrium at the same temperature provided the matter particles are created at a rate that is half the expansion rate. Using the fact that the creation of particles is dynamically equivalent to a nonvanishing bulk pressure we calculate the backreaction of this process on the cosmological dynamics. It turns out that the `adiabatic' creation of massive particles with an equilibrium distribution for the latter necessarily implies power-law inflation. Exponential inflation in this context is shown to become inconsistent with the second law of thermodynamics after a time interval of the order of the Hubble time.Comment: 19 pages, latex, no figures, to appear in Phys.Rev.

    Negative Energy Density in Calabi-Yau Compactifications

    Full text link
    We show that a large class of supersymmetric compactifications, including all simply connected Calabi-Yau and G_2 manifolds, have classical configurations with negative energy density as seen from four dimensions. In fact, the energy density can be arbitrarily negative -- it is unbounded from below. Nevertheless, positive energy theorems show that the total ADM energy remains positive. Physical consequences of the negative energy density include new thermal instabilities, and possible violations of cosmic censorship.Comment: 25 pages, v2: few clarifying comments and reference adde

    The calibration of the Sudbury Neutrino Observatory using uniformly distributed radioactive sources

    Full text link
    The production and analysis of distributed sources of 24Na and 222Rn in the Sudbury Neutrino Observatory (SNO) are described. These unique sources provided accurate calibrations of the response to neutrons, produced through photodisintegration of the deuterons in the heavy water target, and to low energy betas and gammas. The application of these sources in determining the neutron detection efficiency and response of the 3He proportional counter array, and the characteristics of background Cherenkov light from trace amounts of natural radioactivity is described.Comment: 24 pages, 13 figure

    Squeezing of Atoms in a Pulsed Optical Lattice

    Full text link
    We study the process of squeezing of an ensemble of cold atoms in a pulsed optical lattice. The problem is treated both classically and quantum-mechanically under various thermal conditions. We show that a dramatic compression of the atomic density near the minima of the optical potential can be achieved with a proper pulsing of the lattice. Several strategies leading to the enhanced atomic squeezing are suggested, compared and optimized.Comment: Latex, 9 pages, 10 figures, submitted to PR

    Quantized bulk fermions in the Randall-Sundrum brane model

    Get PDF
    The lowest order quantum corrections to the effective action arising from quantized massive fermion fields in the Randall-Sundrum background spacetime are computed. The boundary conditions and their relation with gauge invariance are examined in detail. The possibility of Wilson loop symmetry breaking in brane models is also analysed. The self-consistency requirements, previously considered in the case of a quantized bulk scalar field, are extended to include the contribution from massive fermions. It is shown that in this case it is possible to stabilize the radius of the extra dimensions but it is not possible to simultaneously solve the hierarchy problem, unless the brane tensions are dramatically fine tuned, supporting previous claims.Comment: 25 pages, 1 figure, RevTe

    Is the wear coefficient dependent upon slip amplitude in fretting?: Vingsbo and Söderberg revisited

    Get PDF
    More than 25 years ago, Vingsbo and Söderberg published a seminal paper regarding the mapping of behaviour in fretting contacts (O. Vingsbo, S. Söderberg, On fretting maps, Wear, 126 (1988) 131–147). In this paper, it was proposed that in the gross-slip fretting regime, the wear coefficient increased by between one and two orders of magnitude as the fretting displacement amplitude increased from around 20 ”m to 300 ”m (defined as the limits of the gross-slip regime). Since the publication of this paper, there have been many papers published in the literature regarding fretting in the gross-sliding regime where such a strong dependence of wear coefficient upon fretting displacement has not been observed, with instead, the wear coefficient being shown to be almost independent of fretting amplitude. Indeed, many researchers have demonstrated that there is a good correlation between wear volume and frictional energy dissipated in the contact for many material combinations, with the additional insight that a threshold in energy dissipated in the contact exists, below which no wear is observed (experimental data relating to fretting of a high strength steel is presented in the current paper which supports this concept). It is argued that in deriving a wear coefficient in fretting, there are two key considerations which have not always been addressed: (i) the far-field displacement amplitude is not an adequate substitute for the slip amplitude (the former is the sum of the latter together with any elastic deformation in the system between the contact and the point at which the displacement is measured); and (ii) there is a threshold in the fretting duration, below which no wear occurs and above which the rate of increase in wear volume with increasing duration is constant (this constant may be termed the wear coefficient, ktrue). Not addressing these two issues results in the derivation of a nominal wear coefficient (knominal) which is always less than ktrue. A simple analysis is presented which indicates that knominal / ktrue = 1 - A - B where A is associated with erroneously utilising the far field displacement amplitude in place of the contact slip amplitude in the calculation of the wear coefficient and B is associated with the failure to recognise that there is a threshold in fretting duration below which no wear occurs. A and B are shown to depend upon the tractional force required to initiate sliding (itself dependent upon the applied load and coefficient of friction), the system stiffness, the applied displacement amplitude, the threshold fretting duration below which no wear occurs and the number of fretting cycles in the test. Using typical values of these parameters, the ratio of knominal to ktrue has been shown to be strongly dependent upon the applied displacement amplitude over the range addressed by Vingsbo and Söderberg (with the ratio rapidly decreasing by an order of magnitude over this range). As such, it is argued that ktrue shows no strong dependence on slip amplitude in fretting, and that the strong dependence of knominal upon displacement amplitude presented by Vingsbo and Söderberg does not imply a change in ktrue as is often inferred. The routine recording of force–displacement loops in fretting is a major experimental advancement which has taken place since the publication of the paper by Vingsbo and Söderberg. It is argued that this technique must be routinely used to allow the correct interpretation of wear data in terms of the actual slip amplitude (or energy dissipated); moreover, a range of conditions should be experimentally examined to allow the threshold fretting duration below which no wear has occurred to be evaluated and its significance assessed
    • 

    corecore