51 research outputs found

    Temporal Patterns of Honeybee Foraging in a Diverse Floral Landscape Revealed Using Pollen DNA Metabarcoding of Honey

    Get PDF
    Understanding the plants pollinators use through the year is vital to support pollinator populations and mitigate for declines in floral resources due to habitat loss. DNA metabarcoding allows the temporal picture of nectar and pollen foraging to be examined in detail. Here, we use DNA metabarcoding to examine the forage use of honeybees (Apis mellifera L.) within a florally diverse landscape within the UK, documenting the key forage plants used and seasonal progression over two years. The total number of plant taxa detected in the honey was 120, but only 16 of these were found with a high relative read abundance of DNA, across the main foraging months (April–September). Only a small proportion of the available flowering genera in the landscape were used by the honeybees. The greatest relative read abundance came from native or near-native plants, including Rubus spp., Trifolium repens, the Maleae tribe including Crataegus, Malus, and Cotoneaster, and Hedera helix. Tree species were important forage in the spring months, followed by increased use of herbs and shrubs later in the foraging season. Garden habitat increased the taxon richness of native, near-native and horticultural plants found in the honey. Although horticultural plants were rarely found abundantly within the honey samples, they may be important for increasing nutritional diversity of the pollen forage

    Infrastructure Wi-Fi for connected autonomous vehicle positioning : a review of the state-of-the-art

    Get PDF
    In order to realize intelligent vehicular transport networks and self driving cars, connected autonomous vehicles (CAVs) are required to be able to estimate their position to the nearest centimeter. Traditional positioning in CAVs is realized by using a global navigation satellite system (GNSS) such as global positioning system (GPS) or by fusing weighted location parameters from a GNSS with an inertial navigation systems (INSs). In urban environments where Wi-Fi coverage is ubiquitous and GNSS signals experience signal blockage, multipath or non line-of-sight (NLOS) propagation, enterprise or carrier-grade Wi-Fi networks can be opportunistically used for localization or “fused” with GNSS to improve the localization accuracy and precision. While GNSS-free localization systems are in the literature, a survey of vehicle localization from the perspective of a Wi-Fi anchor/infrastructure is limited. Consequently, this review seeks to investigate recent technological advances relating to positioning techniques between an ego vehicle and a vehicular network infrastructure. Also discussed in this paper is an analysis of the location accuracy, complexity and applicability of surveyed literature with respect to intelligent transportation system requirements for CAVs. It is envisaged that hybrid vehicular localization systems will enable pervasive localization services for CAVs as they travel through urban canyons, dense foliage or multi-story car parks

    Shifts in honeybee foraging reveal historical changes in floral resources

    Get PDF
    Decreasing floral resources as a result of habitat loss is one of the key factors in the decline of pollinating insects worldwide. Understanding which plants pollinators use is vital to inform the provision of appropriate floral resources to help prevent pollinator loss. Using a globally important pollinator, the honeybee, we show how changes in agricultural intensification, crop use and the spread of invasive species, have altered the nectar and pollen sources available in the UK. Using DNA metabarcoding, we analysed 441 honey samples from 2017 and compared these to a nationwide survey of honey samples from 1952. We reveal that shifts in major plants foraged by honeybees are driven by changes in the availability of these plants within the landscape. Improved grasslands are the most widespread habitat type in the UK, and management changes within this habitat have the greatest potential to increase floral resource availability

    GNSS Vulnerabilities and Existing Solutions:A Review of the Literature

    Get PDF
    This literature review paper focuses on existing vulnerabilities associated with global navigation satellite systems (GNSSs). With respect to the civilian/non encrypted GNSSs, they are employed for proving positioning, navigation and timing (PNT) solutions across a wide range of industries. Some of these include electric power grids, stock exchange systems, cellular communications, agriculture, unmanned aerial systems and intelligent transportation systems. In this survey paper, physical degradations, existing threats and solutions adopted in academia and industry are presented. In regards to GNSS threats, jamming and spoofing attacks as well as detection techniques adopted in the literature are surveyed and summarized. Also discussed are multipath propagation in GNSS and non line-of-sight (NLoS) detection techniques. The review also identifies and discusses open research areas and techniques which can be investigated for the purpose of enhancing the robustness of GNSS

    Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability

    Get PDF
    Understanding which flowers honey bees (Apis mellifera) use for forage can help us to provide suitable plants for healthy honey bee colonies. Accordingly, honey DNA metabarcoding provides a valuable tool for investigating pollen and nectar collection. We investigated early season (April and May) floral choice by honey bees provided with a very high diversity of flowering plants within the National Botanic Garden of Wales. There was a close correspondence between the phenology of flowering and the detection of plants within the honey. Within the study area there were 437 genera of plants in flower during April and May, but only 11% of these were used. Thirty-nine plant taxa were recorded from three hives but only ten at greater than 1%. All three colonies used the same core set of native or near-native plants, typically found in hedgerows and woodlands. The major plants were supplemented with a range of horticultural species, with more variation in plant choice between the honey bee colonies. We conclude that during the spring, honey bees need access to native hedgerows and woodlands to provide major plants for foraging. Gardens provide supplementary flowers that may increase the nutritional diversity of the honey bee diet

    Generalisation and specialisation in hoverfly (Syrphidae) grassland pollen transport networks revealed by DNA metabarcoding

    Get PDF
    1. Pollination by insects is a key ecosystem service, and important to wider ecosystem function. Most species-level pollination networks studied have a generalised structure, with plants having several potential pollinators, and pollinators in turn visiting a number of different plant species. This is in apparent contrast to a plant?s need for efficient conspecific pollen transfer. 2. The aim of this study was to investigate the structure of pollen transport networks at three levels of biological hierarchy: community, species, and individual. We did this using hoverflies in the genus Eristalis, a key group of non-Hymenopteran pollinators. 3. We constructed pollen transport networks using DNA metabarcoding to identify pollen. We captured hoverflies in conservation grasslands in west Wales, UK, removed external pollen loads, sequenced the pollen DNA on the Illumina MiSeq platform using the standard plant barcode rbcL, and matched sequences using a pre-existing plant DNA barcode reference library. 4. We found that Eristalis hoverflies transport pollen from 65 plant taxa, more than previously appreciated. Networks were generalised at the site and species level, suggesting some degree of functional redundancy, and were more generalised in late summer compared to early summer. In contrast, pollen transport at the individual level showed some degree of specialisation. Hoverflies defined as ?single-plant visitors? varied from 40% of those captured in early summer to 24% in late summer. Individual hoverflies became more generalised in late summer, possibly in response to an increase in floral resources. Rubus fruticosus agg. and Succisa pratensis were key plant species for hoverflies at our sites 5. Our results contribute to resolving the apparent paradox of how generalised pollinator networks can provide efficient pollination to plant species. Generalised hoverfly pollen transport networks may result from a varied range of short-term specialised feeding bouts by individual insects. The generalisation and functional redundancy of Eristalis pollen transport networks may increase the stability of the pollination service they deliver.publishersversionPeer reviewe

    PNT cyber resilience : a Lab2Live observer based approach, Report 2: specifications for cyber testing facilities. Technical report 2

    Get PDF
    The use of global navigation satellite systems (GNSS) such as GPS and Galileo are vital sources of positioning, navigation and timing (PNT) information for vehicles. This information is of critical importance for connected autonomous vehicles (CAVs) due to their dependence on this information for localisation, route planning and situational awareness. A downside to solely relying on GNSS for PNT is that the signal strength arriving from navigation satellites in space is weak and currently there is no authentication included in the civilian GNSS adopted in the automotive industry. This means that cyber-attacks against the GNSS signal via jamming or spoofing are attractive to adversaries due to the potentially high impact they can achieve. This report introduces specifications and recommendations for GNSS cyber-security test facilities for CAVs. These specifications are based on a survey of academic literature, interviews with a select group of experts, and experiences obtained performing laboratory and real-world testing (shown in Figure 1)

    DNA barcoding the native flowering plants and conifers of Wales

    Get PDF
    We present the first national DNA barcode resource that covers the native flowering plants and conifers for the nation of Wales (1143 species). Using the plant DNA barcode markers rbcL and matK, we have assembled 97.7% coverage for rbcL, 90.2% for matK, and a dual-locus barcode for 89.7% of the native Welsh flora. We have sampled multiple individuals for each species, resulting in 3304 rbcL and 2419 matK sequences. The majority of our samples (85%) are from DNA extracted from herbarium specimens. Recoverability of DNA barcodes is lower using herbarium specimens, compared to freshly collected material, mostly due to lower amplification success, but this is balanced by the increased efficiency of sampling species that have already been collected, identified, and verified by taxonomic experts. The effectiveness of the DNA barcodes for identification (level of discrimination) is assessed using four approaches: the presence of a barcode gap (using pairwise and multiple alignments), formation of monophyletic groups using Neighbour-Joining trees, and sequence similarity in BLASTn searches. These approaches yield similar results, providing relative discrimination levels of 69.4 to 74.9% of all species and 98.6 to 99.8% of genera using both markers. Species discrimination can be further improved using spatially explicit sampling. Mean species discrimination using barcode gap analysis (with a multiple alignment) is 81.6% within 10Ă—10 km squares and 93.3% for 2Ă—2 km squares. Our database of DNA barcodes for Welsh native flowering plants and conifers represents the most complete coverage of any national flora, and offers a valuable platform for a wide range of applications that require accurate species identification

    Floral resource partitioning by individuals within generalised hoverfly pollination networks revealed by DNA metabarcoding

    Get PDF
    Pollination is a key ecosystem service for agriculture and wider ecosystem function. However, most pollination studies focus on Hymenoptera, with hoverflies (Syrphidae) frequently treated as a single functional group. We tested this assumption by investigating pollen carried by eleven species of hoverfly in five genera, Cheilosia, Eristalis, Rhingia, Sericomyia and Volucella, using DNA metabarcoding. Hoverflies carried pollen from 59 plant taxa, suggesting they visit a wider number of plant species than previously appreciated. Most pollen recorded came from plant taxa frequently found at our study sites, predominantly Apiaceae, Cardueae, Calluna vulgaris, Rubus fruticosus agg., and Succisa pratensis, with hoverflies transporting pollen from 40% of entomophilous plant species present. Overall pollen transport network structures were generalised, similar to other pollination networks elsewhere. All hoverfly species were also generalised with few exclusive plant/hoverfly interactions. However, using the Jaccard Index, we found significant differences in the relative composition of pollen loads between hoverfly genera, except for Volucella, demonstrating some degree of functional complementarity. Eristalis and Sericomyia species had significant differences in relative pollen load composition compared to congeners. Our results demonstrate the range of pollens transported by hoverflies and the potential pollination function undertaken within this ecologically and morphologically diverse guild
    • …
    corecore