4,363 research outputs found

    Tractrices, Bicycle Tire Tracks, Hatchet Planimeters, and a 100-year-old Conjecture

    Full text link
    Geometry of the tracks left by a bicycle is closely related with the so-called Prytz planimeter and with linear fractional transformations of the complex plane. We describe these relations, along with the history of the problem, and give a proof of a conjecture made by Menzin in 1906.Comment: 20 pages, 18 figure

    A Possible Case of Spatial Isolation in Brine Flies of the Genus \u3ci\u3eEphydra\u3c/i\u3e (Diptera: Ephydridae)

    Get PDF
    (excerpt) During the summer of 1975, adults and larvae of Ephydra riparia Fallen and E. cinerea Jones were encountered in the many brine pools occurring on the property of the Morton Salt Company at Rittman, Wayne County, Ohio (Scheiring and Foote, 1973). Larvae of both species have been reported to be salt tolerant (Bayly, 1972). E. ripariu larvae can survive in salinities up to 80°/oo (Sutcliffe, 1960), and the larvae of cinerea have been encountered by Nemenz (1960) in the Great Salt Lake of Utah at a salinity of 300°/oo

    \u3ci\u3eAnaphes\u3c/i\u3e (Hymenoptera: Mymaridae) Reared from the Eggs of a Shore Fly (Diptera: Ephydridae)

    Get PDF
    Members of the family Mymaridae are obligate parasitoids of insect eggs, and some species attack the eggs of aquatic insects. Only one account of egg parasitism by the mymarid genus Anaphes on Diptera has been disclosed in the literature. Bakkendorf (1971) bred Anaphes autumnalis Foerster from an egg of Tipula autumnalis Loew

    A Three-dimensional Deformable Brain Atlas for DBS Targeting. I. Methodology for Atlas Creation and Artifact Reduction.

    Get PDF
    BackgroundTargeting in deep brain stimulation (DBS) relies heavily on the ability to accurately localize particular anatomic brain structures. Direct targeting of subcortical structures has been limited by the ability to visualize relevant DBS targets.Methods and resultsIn this work, we describe the development and implementation, of a methodology utilized to create a three dimensional deformable atlas for DBS surgery. This atlas was designed to correspond to the print version of the Schaltenbrand-Bailey atlas structural contours. We employed a smoothing technique to reduce artifacts inherent in the print version.ConclusionsWe present the methodology used to create a three dimensional patient specific DBS atlas which may in the future be tested for clinical utility

    SIMS chemical analysis of extended impacts on the leading and trailing edges of LDEF experiment AO187-2

    Get PDF
    Numerous 'extended impacts' found in both leading and trailing edge capture cells were successfully analyzed for the chemical composition of projectile residues by secondary ion mass spectrometry (SIMS). Most data were obtained from the trailing edge cells where 45 of 58 impacts were classified as 'probably natural' and the remainder as 'possibly man-made debris.' This is in striking contrast to leading edge cells where 9 of 11 impacts so far measured are definitely classified as orbital debris. Although all the leading edge cells had lost their plastic entrance foils during flight, the rate of foil failure was similar to that of the trailing edge cells, 10 percent of which were recovered intact. Ultraviolet embrittlement is suspected as the major cause of failure on both leading and trailing edges. The major impediment to the accurate determination of projectile chemistry is the fractionation of volatile and refractory elements in the hypervelocity impact and redeposition processes. This effect had been noted in a simulation experiment but is more pronounced in the LDEF capture cells, probably due to the higher average velocities of the space impacts. Surface contamination of the pure Ge surfaces with a substance rich in Si, but also containing Mg and Al, provides an additional problem for the accurate determination of impactor chemistry. The effect is variable, being much larger on surfaces that were exposed to space than in those cells that remained intact. Future work will concentrate on the analyses of more leading edge impacts and the development of new SIMS techniques for the measurement of elemental abundances in extended impacts

    Review of Non-destructive Testing (NDT) Techniques and their applicability to thick walled composites

    Get PDF
    A tier 1 automotive supplier has developed a novel and unique kinetic energy recovery storage system for both retro-fitting and OEM application for public transport systems where periodic stop start behaviour is paramount. A major component of the system is a composite flywheel spinning at up to 36,000 rpm (600 Hz). Material soundness is an essential requirement of the flywheel to ensure failure does not occur. The component is particularly thick for a composite being up to 30 mm cross section in some places. The geometry, scale and material make-up pose some challenges for conventional NDT systems. Damage can arise in composite materials during material processing, fabrication of the component or in-service activities among which delamination, cracks and porosity are the most common defects. A number of non-destructive testing (NDT) techniques are effective in testing components for defects without damaging the component. NDT techniques like Ultrasonic Testing, X-Ray, Radiography, Thermography, Eddy current and Acoustic Emission are current techniques for various testing applications. Each of these techniques uses different principles to look into the material for defects. However, the geometry, physical and material properties of the component being tested are important factors in the applicability of a technique. This paper reviews these NDT techniques and compares them in terms of characteristics and applicability to composite parts

    Depth-dependent target strengths of gadoids by the boundary-element method

    Get PDF
    Author Posting. © Acoustical Society of America, 2003. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 114 (2003): 3136-3146, doi:10.1121/1.1619982.The depth dependence of fish target strength has mostly eluded experimental investigation because of the need to distinguish it from depth-dependent behavioral effects, which may change the orientation distribution. The boundary-element method (BEM) offers an avenue of approach. Based on detailed morphometric data on 15 gadoid swimbladders, the BEM has been exercised to determine how the orientation dependence of target strength changes with pressure under the assumption that the fish swimbladder remains constant in shape and volume. The backscattering cross section has been computed at a nominal frequency of 38 kHz as a function of orientation for each of three pressures: 1, 11, and 51 atm. Increased variability in target strength and more abundant and stronger resonances are both observed with increasing depth. The respective backscattering cross sections have been averaged with respect to each of four normal distributions of tilt angle, and the corresponding target strengths have been regressed on the logarithm of fish length. The tilt-angle-averaged backscattering cross sections at the highest pressure have also been averaged with respect to frequency over a 2-kHz band for representative conditions of insonification. For all averaging methods, the mean target strength changes only slightly with depth.This work began with sponsorship by the European Commission through its RTD-program, Contract No. MAS3-CT95-0031 (BASS), and was completed with support by the Office of Naval Research, Contract No. N000140310368

    Tree size but not forest basal area influences ant colony response to disturbance in a neotropical ant–plant association

    Get PDF
    Ant–acacia mutualisms are conspicuous biotic associations in Savannah and neotropical ecosystems; however, the effects of tree size and forest structure on ant behaviour and tree traits are rarely examined. We tested two hypotheses related to these effects: (1) ant responses to disturbance are influenced by tree size and forest basal area; and (2) tree traits important to ants are predictable by tree size and forest basal area. We investigated these hypotheses in a dry tropical forest (Ometepe Island, Nicaragua) with the myrmecophytic Collins acacia (Vachellia collinsii Saff.) and the ant Pseudomyrmex spinicola (Emery 1890). We measured trees from three size classes and three basal area classes and quantified resources that are important for ants, including food resources (nectaries and Beltian bodies) and domiciles (thorns), as well as a measure of potential tree reproductive fitness (seedpods). We also evaluated ant responses to experimental disturbances. Three important findings emerged: (1) on average, 1140–1173% more ants responded to experimental disturbances of large trees than small- or intermediate-sized trees, respectively; (2) forest basal area did not affect ant responses to disturbance; and (3) neither tree size nor forest basal area was correlated with branch-level mean numbers of nectaries, food bodies or thorns. Our studies support the hypothesis that tree size is an important factor regarding ant behavioural responses to disturbance, but not forest basal area. Our work suggests that future studies of ant behaviour on myrmecophytes should consider tree size
    • …
    corecore