40 research outputs found

    Systematic review of effect of community-level interventions to reduce maternal mortality

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective was to provide a systematic review of the effectiveness of community-level interventions to reduce maternal mortality.</p> <p>Methods</p> <p>We searched published papers using Medline, Embase, Cochrane library, CINAHL, BNI, CAB ABSTRACTS, IBSS, Web of Science, LILACS and African Index Medicus from inception or at least 1982 to June 2006; searched unpublished works using National Research Register website, metaRegister and the WHO International Trial Registry portal. We hand searched major references.</p> <p>Selection criteria were maternity or childbearing age women, comparative study designs with concurrent controls, community-level interventions and maternal death as an outcome. We carried out study selection, data abstraction and quality assessment independently in duplicate.</p> <p>Results</p> <p>We found five cluster randomised controlled trials (RCT) and eight cohort studies of community-level interventions. We summarised results as odds ratios (OR) and confidence intervals (CI), combined using the Peto method for meta-analysis. Two high quality cluster RCTs, aimed at improving perinatal care practices, showed a reduction in maternal mortality reaching statistical significance (OR 0.62, 95% CI 0.39 to 0.98). Three equivalence RCTs of minimal goal-oriented versus usual antenatal care showed no difference in maternal mortality (1.09, 95% CI 0.53 to 2.25). The cohort studies were of low quality and did not contribute further evidence.</p> <p>Conclusion</p> <p>Community-level interventions of improved perinatal care practices can bring about a reduction in maternal mortality. This challenges the view that investment in such interventions is not worthwhile. Programmes to improve maternal mortality should be evaluated using randomised controlled techniques to generate further evidence.</p

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Hydrodynamic conditions in laser irradiated buried layer experiments

    Get PDF
    The calculation of open shell ionization level and radiative properties of materials in Non-Local Thermal Equilibrium (NLTE) is currently still a major challenge for any atomic model. The predictions of various NLTE atomic codes at these conditions still differ significantly. In recent years, a new buried layer platform was developed at the Lawrence Livermore National Laboratory and the Laboratory for Laser Energetics. This platform is used to measure ionization distribution and emission of open L-shell, mid-Z ions and open M-shell, high-Z ions at NLTE conditions that are relevant in many laser plasma applications. These experiments offer a unique chance for benchmarking the atomic models. In order to perform these experiments, a uniform well characterized plasma source is required. In this work, we present one-dimensional (1D) and two-dimensional simulations of the experimental platform. These simulations were used for both the design and the analysis of the experiments. The simulations demonstrate the different phases of hydrodynamic evolution of the target and identify the time windows in which uniform conditions can be achieved. A 1D expansion of the target was found to be adequate to describe the target's evolution for most of the experiment duration. The fast 1D simulations were compared with recent experimental results from the Omega laser facility. The sensitivity of the results to several modeling parameters such as the electron flux limiter and laser resonant absorption is reported

    Demonstration of geometric effects and resonant scattering in the X-Ray spectra of high-energy-density plasmas

    Get PDF
    In a plasma of sufficient size and density, photons emitted within the system have a probability of being reabsorbed and reemitted multiple times—a phenomenon known in astrophysics as resonant scattering. This effect alters the ratio of optically thick to optically thin lines, depending on the plasma geometry and viewing angle, and has significant implications for the spectra observed in a number of astrophysical scenarios, but has not previously been studied in a controlled laboratory plasma. We demonstrate the effect in the x-ray spectra emitted by cylindrical plasmas generated by high power laser irradiation, and the results confirm the geometrical interpretation of resonant scattering

    Demonstration of geometric effects and resonant scattering in the x-ray spectra of high-energy-density plasmas

    No full text
    In a plasma of sufficient size and density, photons emitted within the system have a probability of being re-absorbed and re-emitted multiple times - a phenomenon known in astrophysics as resonant scattering. This effect alters the ratio of optically-thick to optically thin lines, depending on the plasma geometry and viewing angle, and has significant implications for the spectra observed in a number of astrophysical scenarios, but has not previously been studied in a controlled laboratory plasma. We demonstrate the effect in the x-ray spectra emitted by cylindrical plasmas generated by high power laser irradiation, and the results confirm the geometrical interpretation of resonant scattering

    Laboratory measurements of geometrical effects in the x-ray emission of optically thick lines for ICF diagnostics

    Get PDF
    Understanding the effects of radiative transfer in High Energy Density Physics experiments is critical for the characterization of the thermodynamic properties of highly ionized matter, in particular in Inertial Confinement Fusion (ICF). We report on non-Local Thermodynamic Equilibrium experiments on cylindrical targets carried out at the Omega Laser Facility at the Laboratory for Laser Energetics, Rochester NY, which aim to characterize these effects. In these experiments, a 50/50 mixture of iron and vanadium, with a thickness of 2000 Å and a diameter of 250 μm, is contained within a beryllium tamper, with a thickness of 10 μm and a diameter of 1000 μm. Each side of the beryllium tamper is then irradiated using 18 of the 60 Omega beams with an intensity of roughly 3 × 1014 W cm−2 per side, over a duration of 3 ns. Spectroscopic measurements show that a plasma temperature on the order of 2 keV was produced. Imaging data show that the plasma remains cylindrical, with geometrical aspect ratios (quotient between the height and the radius of the cylinder) from 0.4 to 2.0. The temperatures in this experiment were kept sufficiently low (∼1–2 keV) so that the optically thin Li-like satellite emission could be used for temperature diagnosis. This allowed for the characterization of optical-depth-dependent geometric effects in the vanadium line emission. Simulations present good agreement with the data, which allows this study to benchmark these effects in order to take them into account to deduce temperature and density in future ICF experiments, such as those performed at the National Ignition Facility
    corecore