191 research outputs found

    Non-Linear Aeroelastic Capabilities in NeoCASS Suite

    Get PDF

    The β-1,3-glucanosyltransferases (Gels) affect the structure of the rice blast fungal cell wall during appressorium-mediated plant infection

    Get PDF
    The fungal wall is pivotal for cell shape and function, and in interfacial protection during host infection and environmental challenge. Here, we provide the first description of the carbohydrate composition and structure of the cell wall of the rice blast fungus Magnaporthe oryzae. We focus on the family of glucan elongation proteins (Gels) and characterize five putative β‐1,3‐glucan glucanosyltransferases that each carry the Glycoside Hydrolase 72 signature. We generated targeted deletion mutants of all Gel isoforms, that is, the GH72+, which carry a putative carbohydrate‐binding module, and the GH72− Gels, without this motif. We reveal that M. oryzae GH72+ GELs are expressed in spores and during both infective and vegetative growth, but each individual Gel enzymes are dispensable for pathogenicity. Further, we demonstrated that a Δgel1Δgel3Δgel4 null mutant has a modified cell wall in which 1,3‐glucans have a higher degree of polymerization and are less branched than the wild‐type strain. The mutant showed significant differences in global patterns of gene expression, a hyper‐branching phenotype and no sporulation, and thus was unable to cause rice blast lesions (except via wounded tissues). We conclude that Gel proteins play significant roles in structural modification of the fungal cell wall during appressorium‐mediated plant infection

    The disruption of JEN1 from Candida albicans impairs the transport of lactate

    Get PDF
    A lactate permease was biochemically identified in Candida albicans RM1000 presenting the following kinetic parameters at pH 5.0: Km 0.33 ± 0.09 mM and Vmax 0.85± 0.06 nmol s-1 mg dry wt-1. Lactate uptake was competitively inhibited by pyruvic and propionic acids; acetic acid behaved as a non-competitive substrate. An ORF homologous to Saccharomyces cerevisiae gene JEN1 was identified (CaJEN1). Deletions of both CaJEN1 alleles of C. albicans (resulting strain CPK2) resulted in the loss of all measurable lactate permease activity. No CaJEN1 mRNA was detectable in glucose-grown cells neither activity for the lactate transporter. In a medium containing lactic acid, CaJEN1 mRNA was detected in the RM1000 strain, and no expression was found in cells of CPK2 strain. In a strain deleted in the CaCAT8 genes the expression of CaJEN1 was significantly reduced, suggesting the role of this gene as an activator for CaJEN1 expression. Both in C. albicans and in S. cerevisiae cells CaJEN1-GFP fusion was expressed and targeted to the plasma membrane. The native CaJEN1 was not functional in a S. cerevisiae jen1Δ strain. Changing ser217-CTG codon (encoding leucine in S. cerevisiae) to a TCC codon restored the permease activity in S. cerevisiae, proving that the CaJEN1 gene codes for a monocarboxylate transporter.Deutsche Forschungsgemeinschaft (SFB 579).Fundação para a Ciência e a Tecnologia (FCT) - Programa Operacional “Ciência, Tecnologia, Inovação” (POCTI) - POCTI/1999/BME/36625 (Eixo 2, Medida 2.3, QCAIII-FEDER) , SFRH/BD/4699/2001 , PRAXIS XXI/BD/18198/98

    Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast

    Get PDF
    Acknowledgments We thank Rebecca Shapiro for creating CaLC1819, CaLC1855 and CaLC1875, Gillian Milne for help with EM, Aaron Mitchell for generously providing the transposon insertion mutant library, Jesus Pla for generously providing the hog1 hst7 mutant, and Cathy Collins for technical assistance.Peer reviewedPublisher PD

    Modulation of telomere terminal structure by telomerase components in Candida albicans

    Get PDF
    The telomerase ribonucleoprotein in Candida albicans is presumed to contain at least three Est proteins: CaEst1p, CaEst2p/TERT and CaEst3p. We constructed mutants missing each of the protein subunit of telomerase and analyzed overall telomere dynamics and single-stranded telomere overhangs over the course of many generations. The est1-ΔΔ mutant manifested abrupt telomere loss and recovery, consistent with heightened recombination. Both the est2-ΔΔ and est3-ΔΔ mutant exhibited progressive telomere loss, followed by the gradual emergence of survivors with long telomeres. In no case was telomere loss accompanied by severe growth defects, suggesting that cells with short telomeres can continue to proliferate. Furthermore, the amount of G-strand terminal overhangs was greatly increased in the est2-ΔΔ mutant, but not others. Our results suggest that in addition to their well-characterized function in telomere elongation, both CaEst1p and CaEst2p mediate some aspects of telomere protection in Candida, with the former suppressing excessive recombination, and the latter preventing excessive C-strand degradation

    In Vivo Systematic Analysis of Candida albicans Zn2-Cys6 Transcription Factors Mutants for Mice Organ Colonization

    Get PDF
    The incidence of fungal infections in immuno-compromised patients increased considerably over the last 30 years. New treatments are therefore needed against pathogenic fungi. With Candida albicans as a model, study of host-fungal pathogen interactions might reveal new sources of therapies. Transcription factors (TF) are of interest since they integrate signals from the host environment and participate in an adapted microbial response. TFs of the Zn2-Cys6 class are specific to fungi and are important regulators of fungal metabolism. This work analyzed the importance of the C. albicans Zn2-Cys6 TF for mice kidney colonization. For this purpose, 77 Zn2-Cys6 TF mutants were screened in a systemic mice model of infection by pools of 10 mutants. We developed a simple barcoding strategy to specifically detect each mutant DNA from mice kidney by quantitative PCR. Among the 77 TF mutant strains tested, eight showed a decreased colonization including mutants for orf19.3405, orf19.255, orf19.5133, RGT1, UGA3, orf19.6182, SEF1 and orf19.2646, and four an increased colonization including mutants for orf19.4166, ZFU2, orf19.1685 and UPC2 as compared to the isogenic wild type strain. Our approach was validated by comparable results obtained with the same animal model using a single mutant and the revertant for an ORF (orf19.2646) with still unknown functions. In an attempt to identify putative involvement of such TFs in already known C. albicans virulence mechanisms, we determined their in vitro susceptibility to pH, heat and oxidative stresses, as well as ability to produce hyphae and invade agar. A poor correlation was found between in vitro and in vivo assays, thus suggesting that TFs needed for mice kidney colonization may involve still unknown mechanisms. This large-scale analysis of mice organ colonization by C. albicans can now be extended to other mutant libraries since our in vivo screening strategy can be adapted to any preexisting mutants

    Functional Importance of the DNA Binding Activity of Candida albicans Czf1p

    Get PDF
    The human opportunistic pathogen Candida albicans undergoes a reversible morphological transition between the yeast and hyphal states in response to a variety of signals. One such environmental trigger is growth within a semisolid matrix such as agar medium. This growth condition is of interest because it may mimic the growth of C. albicans in contact with host tissue during infection. During growth within a semisolid matrix, hyphal growth is positively regulated by the transcriptional regulator Czf1p and negatively by a second key transcriptional regulator, Efg1p. Genetic studies indicate that Czf1p, a member of the zinc-cluster family of transcriptional regulators, exerts its function by opposing the inhibitory influence of Efg1p on matrix-induced filamentous growth. We examined the importance of the two known activities of Czf1p, DNA-binding and interaction with Efg1p. We found that the two activities were separable by mutation allowing us to demonstrate that the DNA-binding activity of Czf1p was essential for its role as a positive regulator of morphogenesis. Surprisingly, however, interactions with Efg1p appeared to be largely dispensable. Our studies provide the first evidence of a key role for the DNA-binding activity of Czf1p in the morphological yeast-to-hyphal transition triggered by matrix-embedded growth
    corecore