12 research outputs found
Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction.
Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction
Effect of smoking on failure of H. pylori therapy and gastric histology in a high gastric cancer risk area of Colombia
La erradicación del Helicobacter pylori ha sido propuesta como medida promisoria en la prevención del cáncer gástrico. Varios factores, incluyendo el tabaquismo, se asocian con la falla del tratamiento. El objetivo de este estudio fue evaluar el efecto del tabaquismo en la eficacia del tratamiento anti-H. pylori y en la histología gástrica en residentes de una zona de alto riesgo de cáncer gástrico. Este estudio incluyó 264 sujetos colombianos con lesiones gástricas preneoplásicas que participaron en un estudio de quimioprevención, recibieron tratamiento anti-H. pylori al ingreso, y proveyeron información sobre tabaquismo. Se realizó un detallado análisis histopatológico en las biopsias colectadas al ingreso. La erradicación de la infección fue evaluada en las biopsias gástricas a los 36 meses post-tratamiento. El porcentaje general de erradicación fue de 52.3%, con proporciones de 41.3% y 57.1% en fumadores activos y no fumadores, respectivamente. El análisis de regresión logística múltiple mostró que el riesgo de presentar falla al tratamiento fue doble en fumadores en comparación con los no fumadores (OR: 2.0; 95% CI: 1.01-3.95). Los fumadores presentaron un mayor índice de metaplasia intestinal comparado con los no fumadores. En la mucosa del cuerpo gástrico los fumadores mostraron menores índices de colonización por H. pylori, inflamación total, infiltración de neutrófilos y depleción de moco que los no fumadores. En el antro no se observaron diferencias significacomtivas entre ambos grupos. En conclusión, el tratamiento anti-H. pylori fue menos efectivo en sujetos fumadores. La cesación del consumo de tabaco puede beneficiar las tasas de erradicación del H. pylori
Breast Cancer Screening for Women at Average Risk: 2015 Guideline Update From the American Cancer Society
ImportanceBreast cancer is a leading cause of premature mortality among US women. Early detection has been shown to be associated with reduced breast cancer morbidity and mortality.ObjectiveTo update the American Cancer Society (ACS) 2003 breast cancer screening guideline for women at average risk for breast cancer.ProcessThe ACS commissioned a systematic evidence review of the breast cancer screening literature to inform the update and a supplemental analysis of mammography registry data to address questions related to the screening interval. Formulation of recommendations was based on the quality of the evidence and judgment (incorporating values and preferences) about the balance of benefits and harms.Evidence synthesisScreening mammography in women aged 40 to 69 years is associated with a reduction in breast cancer deaths across a range of study designs, and inferential evidence supports breast cancer screening for women 70 years and older who are in good health. Estimates of the cumulative lifetime risk of false-positive examination results are greater if screening begins at younger ages because of the greater number of mammograms, as well as the higher recall rate in younger women. The quality of the evidence for overdiagnosis is not sufficient to estimate a lifetime risk with confidence. Analysis examining the screening interval demonstrates more favorable tumor characteristics when premenopausal women are screened annually vs biennially. Evidence does not support routine clinical breast examination as a screening method for women at average risk.RecommendationsThe ACS recommends that women with an average risk of breast cancer should undergo regular screening mammography starting at age 45 years (strong recommendation). Women aged 45 to 54 years should be screened annually (qualified recommendation). Women 55 years and older should transition to biennial screening or have the opportunity to continue screening annually (qualified recommendation). Women should have the opportunity to begin annual screening between the ages of 40 and 44 years (qualified recommendation). Women should continue screening mammography as long as their overall health is good and they have a life expectancy of 10 years or longer (qualified recommendation). The ACS does not recommend clinical breast examination for breast cancer screening among average-risk women at any age (qualified recommendation).Conclusions and relevanceThese updated ACS guidelines provide evidence-based recommendations for breast cancer screening for women at average risk of breast cancer. These recommendations should be considered by physicians and women in discussions about breast cancer screening
American Cancer Society lung cancer screening guidelines
Findings from the National Cancer Institute's National Lung Screening Trial established that lung cancer mortality in specific high-risk groups can be reduced by annual screening with low-dose computed tomography. These findings indicate that the adoption of lung cancer screening could save many lives. Based on the results of the National Lung Screening Trial, the American Cancer Society is issuing an initial guideline for lung cancer screening. This guideline recommends that clinicians with access to high-volume, high-quality lung cancer screening and treatment centers should initiate a discussion about screening with apparently healthy patients aged 55 years to 74 years who have at least a 30-pack-year smoking history and who currently smoke or have quit within the past 15 years. A process of informed and shared decision-making with a clinician related to the potential benefits, limitations, and harms associated with screening for lung cancer with low-dose computed tomography should occur before any decision is made to initiate lung cancer screening. Smoking cessation counseling remains a high priority for clinical attention in discussions with current smokers, who should be informed of their continuing risk of lung cancer. Screening should not be viewed as an alternative to smoking cessation
Recommended from our members
African-specific improvement of a polygenic hazard score for age at diagnosis of prostate cancer.
Polygenic hazard score (PHS) models are associated with age at diagnosis of prostate cancer. Our model developed in Europeans (PHS46) showed reduced performance in men with African genetic ancestry. We used a cross-validated search to identify single nucleotide polymorphisms (SNPs) that might improve performance in this population. Anonymized genotypic data were obtained from the PRACTICAL consortium for 6253 men with African genetic ancestry. Ten iterations of a 10-fold cross-validation search were conducted to select SNPs that would be included in the final PHS46+African model. The coefficients of PHS46+African were estimated in a Cox proportional hazards framework using age at diagnosis as the dependent variable and PHS46, and selected SNPs as predictors. The performance of PHS46 and PHS46+African was compared using the same cross-validated approach. Three SNPs (rs76229939, rs74421890 and rs5013678) were selected for inclusion in PHS46+African. All three SNPs are located on chromosome 8q24. PHS46+African showed substantial improvements in all performance metrics measured, including a 75% increase in the relative hazard of those in the upper 20% compared to the bottom 20% (2.47-4.34) and a 20% reduction in the relative hazard of those in the bottom 20% compared to the middle 40% (0.65-0.53). In conclusion, we identified three SNPs that substantially improved the association of PHS46 with age at diagnosis of prostate cancer in men with African genetic ancestry to levels comparable to Europeans
African-specific improvement of a polygenic hazard score for age at diagnosis of prostate cancer
International audiencePolygenic hazard score (PHS) models are associated with age at diagnosis of prostate cancer. Our model developed in Europeans (PHS46) showed reduced performance in men with African genetic ancestry. We used a cross-validated search to identify single nucleotide polymorphisms (SNPs) that might improve performance in this population. Anonymized genotypic data were obtained from the PRACTICAL consortium for 6253 men with African genetic ancestry. Ten iterations of a 10-fold cross-validation search were conducted to select SNPs that would be included in the final PHS46+African model. The coefficients of PHS46+African were estimated in a Cox proportional hazards framework using age at diagnosis as the dependent variable and PHS46, and selected SNPs as predictors. The performance of PHS46 and PHS46+African was compared using the same cross-validated approach. Three SNPs (rs76229939, rs74421890 and rs5013678) were selected for inclusion in PHS46+African. All three SNPs are located on chromosome 8q24. PHS46+African showed substantial improvements in all performance metrics measured, including a 75% increase in the relative hazard of those in the upper 20% compared to the bottom 20% (2.47-4.34) and a 20% reduction in the relative hazard of those in the bottom 20% compared to the middle 40% (0.65-0.53). In conclusion, we identified three SNPs that substantially improved the association of PHS46 with age at diagnosis of prostate cancer in men with African genetic ancestry to levels comparable to Europeans
Recommended from our members
Associations of prostate cancer risk variants with disease aggressiveness: results of the NCI-SPORE Genetics Working Group analysis of 18,343 cases.
Genetic studies have identified single nucleotide polymorphisms (SNPs) associated with the risk of prostate cancer (PC). It remains unclear whether such genetic variants are associated with disease aggressiveness. The NCI-SPORE Genetics Working Group retrospectively collected clinicopathologic information and genotype data for 36 SNPs which at the time had been validated to be associated with PC risk from 25,674 cases with PC. Cases were grouped according to race, Gleason score (Gleason ≤ 6, 7, ≥ 8) and aggressiveness (non-aggressive, intermediate, and aggressive disease). Statistical analyses were used to compare the frequency of the SNPs between different disease cohorts. After adjusting for multiple testing, only PC-risk SNP rs2735839 (G) was significantly and inversely associated with aggressive (OR = 0.77; 95 % CI 0.69-0.87) and high-grade disease (OR = 0.77; 95 % CI 0.68-0.86) in European men. Similar associations with aggressive (OR = 0.72; 95 % CI 0.58-0.89) and high-grade disease (OR = 0.69; 95 % CI 0.54-0.87) were documented in African-American subjects. The G allele of rs2735839 was associated with disease aggressiveness even at low PSA levels (<4.0 ng/mL) in both European and African-American men. Our results provide further support that a PC-risk SNP rs2735839 near the KLK3 gene on chromosome 19q13 may be associated with aggressive and high-grade PC. Future prospectively designed, case-case GWAS are needed to identify additional SNPs associated with PC aggressiveness
Recommended from our members
Performance of African-ancestry-specific polygenic hazard score varies according to local ancestry in 8q24.
BackgroundWe previously developed an African-ancestry-specific polygenic hazard score (PHS46+African) that substantially improved prostate cancer risk stratification in men with African ancestry. The model consists of 46 SNPs identified in Europeans and 3 SNPs from 8q24 shown to improve model performance in Africans. Herein, we used principal component (PC) analysis to uncover subpopulations of men with African ancestry for whom the utility of PHS46+African may differ.Materials and methodsGenotypic data were obtained from the PRACTICAL consortium for 6253 men with African genetic ancestry. Genetic variation in a window spanning 3 African-specific 8q24 SNPs was estimated using 93 PCs. A Cox proportional hazards framework was used to identify the pair of PCs most strongly associated with the performance of PHS46+African. A calibration factor (CF) was formulated using Cox coefficients to quantify the extent to which the performance of PHS46+African varies with PC.ResultsCF of PHS46+African was strongly associated with the first and twentieth PCs. Predicted CF ranged from 0.41 to 2.94, suggesting that PHS46+African may be up to 7 times more beneficial to some African men than others. The explained relative risk for PHS46+African varied from 3.6% to 9.9% for individuals with low and high CF values, respectively. By cross-referencing our data set with 1000 Genomes, we identified significant associations between continental and calibration groupings.ConclusionWe identified PCs within 8q24 that were strongly associated with the performance of PHS46+African. Further research to improve the clinical utility of polygenic risk scores (or models) is needed to improve health outcomes for men of African ancestry