224 research outputs found

    Transcriptome changes in newborn goats' skeletal muscle as a result of maternal feed restriction at different stages of gestation

    Get PDF
    We investigated how feed restriction at 50% of maintenance requirements during different stages of gestation affects the transcriptome of newborn goats' skeletal muscle. Fourteen pregnant dams were randomly assigned into one of the following dietary treatments: animals fed at 50% of maintenance requirement from 8-84 d of gestation and then fed at 100% of maintenance requirement from day 85 of gestation to parturition (RM, n = 6), and animals fed at 100% of maintenance requirement from 8-84 d of gestation and then fed at 50% of maintenance requirement from day 85 of gestation to parturition (MR, n = 8). At birth, samples of offspring's Longissimus muscle were collected for total RNA extraction and sequencing. Our data showed 66 differentially expressed (DE) genes (FDR < 0.05). A total of 6 genes were upregulated and 60 downregulated (FDR < 0.05) in the skeletal muscle of the newborns resulting from treatment RM compared with MR. Our results suggest that the DE genes upregulated in newborn goats' skeletal muscle from the RM group compared to MR, included genes related to satellite cells, and genes that indicates impaired insulin sensitivity and changes in the composition of intramuscular fat. The DE genes upregulated in newborn goats' skeletal muscle from the MR group compared to RM, are also related to impaired insulin sensitivity, as well as a predominantly oxidative metabolism and cellular oxidative stress. However, protective mechanisms against insulin sensitivity and oxidative stress may have been augmented in the skeletal muscle of offspring from MR treatment compared to RM, in order to maintain cellular homeostasis

    A Functional Nuclear Localization Sequence in the C. elegans TRPV Channel OCR-2

    Get PDF
    The ability to modulate gene expression in response to sensory experience is critical to the normal development and function of the nervous system. Calcium is a key activator of the signal transduction cascades that mediate the process of translating a cellular stimulus into transcriptional changes. With the recent discovery that the mammalian Cav1.2 calcium channel can be cleaved, enter the nucleus and act as a transcription factor to control neuronal gene expression, a more direct role for the calcium channels themselves in regulating transcription has begun to be appreciated. Here we report the identification of a nuclear localization sequence (NLS) in the C. elegans transient receptor potential vanilloid (TRPV) cation channel OCR-2. TRPV channels have previously been implicated in transcriptional regulation of neuronal genes in the nematode, although the precise mechanism remains unclear. We show that the NLS in OCR-2 is functional, being able to direct nuclear accumulation of a synthetic cargo protein as well as the carboxy-terminal cytosolic tail of OCR-2 where it is endogenously found. Furthermore, we discovered that a carboxy-terminal portion of the full-length channel can localize to the nucleus of neuronal cells. These results suggest that the OCR-2 TRPV cation channel may have a direct nuclear function in neuronal cells that was not previously appreciated

    Novel combination of feed enzymes to improve the degradation of Chlorella vulgaris recalcitrant cell wall

    Get PDF
    Research Areas: Science & TechnologyABSTRACT - In this study, a rational combination of 200 pre-selected Carbohydrate-Active enzymes (CAZymes) and sulfatases were tested, individually or combined, according to their ability to degrade Chlorella vulgaris cell wall to access its valuable nutritional compounds. The disruption of microalgae cell walls by a four enzyme mixture (Mix) in comparison with the control, enabled to release up to 1.21g/L of reducing sugars (p<0.001), led to an eight-fold increase in oligosaccharides release (p<0.001), and reduced the fuorescence intensity by 47% after staining with Calcofuor White (p<0.001). The Mix treatment was successful in releasing proteins (p<0.001), some MUFA (p<0.05), and the benefcial 18:3n-3 fatty acid (p0.05), total carotenoids were increased in the supernatant (p<0.05) from the Mix treatment, relative to the control. Taken together, these results indicate that this four-enzyme Mix displays an efective capacity to degrade C. vulgaris cell wall. Thus, these enzymes may constitute a good approach to improve the bioavailability of C. vulgaris nutrients for monogastric diets, in particular, and to facilitate the cost-efective use of microalgae by the feed industry, in general.info:eu-repo/semantics/publishedVersio

    Immunoglobulin GM 3 23 5,13,14 phenotype is strongly associated with IgG1 antibody responses to Plasmodium vivax vaccine candidate antigens PvMSP1-19 and PvAMA-1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Humoral immune responses play a key role in the development of immunity to malaria, but the host genetic factors that contribute to the naturally occurring immune responses to malarial antigens are not completely understood. The aim of the present investigation was to determine whether, in subjects exposed to malaria, GM and KM allotypes--genetic markers of immunoglobulin γ and κ-type light chains, respectively--contribute to the magnitude of natural antibody responses to target antigens that are leading vaccine candidates for protection against <it>Plasmodium vivax</it>.</p> <p>Methods</p> <p>Sera from 210 adults, who had been exposed to malaria transmission in the Brazilian Amazon endemic area, were allotyped for several GM and KM determinants by a standard hemagglutination-inhibition method. IgG subclass antibodies to <it>P. vivax </it>apical membrane antigen 1 (PvAMA-1) and merozoite surface protein 1 (PvMSP1-19) were determined by an enzyme-linked immunosorbent assay. Multiple linear regression models and the non-parametric Mann-Whitney test were used for data analyses.</p> <p>Results</p> <p>IgG1 antibody levels to both PvMSP1-19 and PvAMA-1 antigens were significantly higher (<it>P </it>= 0.004, <it>P </it>= 0.002, respectively) in subjects with the GM 3 23 5,13,14 phenotype than in those who lacked this phenotype.</p> <p>Conclusions</p> <p>Results presented here show that immunoglobulin GM allotypes contribute to the natural antibody responses to <it>P. vivax </it>malaria antigens. These findings have important implications for the effectiveness of vaccines containing PvAMA-1 or PvMSP1-19 antigens. They also shed light on the possible role of malaria as one of the evolutionary selective forces that may have contributed to the maintenance of the extensive polymorphism at the GM loci.</p

    Contribution of DEAF1 Structural Domains to the Interaction with the Breast Cancer Oncogene LMO4

    Get PDF
    The proteins LMO4 and DEAF1 contribute to the proliferation of mammary epithelial cells. During breast cancer LMO4 is upregulated, affecting its interaction with other protein partners. This may set cells on a path to tumour formation. LMO4 and DEAF1 interact, but it is unknown how they cooperate to regulate cell proliferation. In this study, we identify a specific LMO4-binding domain in DEAF1. This domain contains an unstructured region that directly contacts LMO4, and a coiled coil that contains the DEAF1 nuclear export signal (NES). The coiled coil region can form tetramers and has the typical properties of a coiled coil domain. Using a simple cell-based assay, we show that LMO4 modulates the activity of the DEAF NES, causing nuclear accumulation of a construct containing the LMO4-interaction region of DEAF1

    Bird-termite interactions in Brazil: A review with perspectives for future studies

    Full text link

    Genetic polymorphisms associated with the inflammatory response in bacterial meningitis

    Get PDF
    BACKGROUND Bacterial meningitis (BM) is an infectious disease that results in high mortality and morbidity. Despite efficacious antibiotic therapy, neurological sequelae are often observed in patients after disease. Currently, the main challenge in BM treatment is to develop adjuvant therapies that reduce the occurrence of sequelae. In recent papers published by our group, we described the associations between the single nucleotide polymorphisms (SNPs) AADAT +401C > T, APEX1 Asn148Glu, OGG1 Ser326Cys and PARP1 Val762Ala and BM. In this study, we analyzed the associations between the SNPs TNF -308G > A, TNF -857C > T, IL-8 -251A > T and BM and investigated gene-gene interactions, including the SNPs that we published previously. METHODS The study was conducted with 54 BM patients and 110 healthy volunteers (as the control group). The genotypes were investigated via primer-introduced restriction analysis-polymerase chain reaction (PIRA-PCR) or polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) analysis. Allelic and genotypic frequencies were also associated with cytokine and chemokine levels, as measured with the x-MAP method, and cell counts. We analyzed gene-gene interactions among SNPs using the generalized multifactor dimensionality reduction (GMDR) method. RESULTS We did not find significant association between the SNPs TNF -857C > T and IL-8 -251A > T and the disease. However, a higher frequency of the variant allele TNF -308A was observed in the control group, associated with changes in cytokine levels compared to individuals with wild type genotypes, suggesting a possible protective role. In addition, combined inter-gene interaction analysis indicated a significant association between certain genotypes and BM, mainly involving the alleles APEX1 148Glu, IL8 -251 T and AADAT +401 T. These genotypic combinations were shown to affect cyto/chemokine levels and cell counts in CSF samples from BM patients. CONCLUSIONS In conclusion, this study revealed a significant association between genetic variability and altered inflammatory responses, involving important pathways that are activated during BM. This knowledge may be useful for a better understanding of BM pathogenesis and the development of new therapeutic approaches

    Broadened T-cell Repertoire Diversity in ivIg-treated SLE Patients is Also Related to the Individual Status of Regulatory T-cells

    Get PDF
    Intravenous IgG (ivIg) is a therapeutic alternative for lupus erythematosus, the mechanism of which remains to be fully understood. Here we investigated whether ivIg affects two established sub-phenotypes of SLE, namely relative oligoclonality of circulating T-cells and reduced activity of CD4 + Foxp3+ regulatory T-cells (Tregs) reflected by lower CD25 surface density.Octapharma research funding; Fundação para a Ciência e a Tecnologia postdoctoral fellowships: (SFRH/BPD/20806/2004, SFRH/BPD/34648/2007); FCT Programa Pessoa travel grant

    High interannual variability in connectivity and genetic pool of a temperate clingfish matches oceanographic transport predictions

    Get PDF
    Adults of most marine benthic and demersal fish are site-attached, with the dispersal of their larval stages ensuring connectivity among populations. In this study we aimed to infer spatial and temporal variation in population connectivity and dispersal of a marine fish species, using genetic tools and comparing these with oceanographic transport. We focused on an intertidal rocky reef fish species, the shore clingfish Lepadogaster lepadogaster, along the southwest Iberian Peninsula, in 2011 and 2012. We predicted high levels of self-recruitment and distinct populations, due to short pelagic larval duration and because all its developmental stages have previously been found near adult habitats. Genetic analyses based on microsatellites countered our prediction and a biophysical dispersal model showed that oceanographic transport was a good explanation for the patterns observed. Adult sub-populations separated by up to 300 km of coastline displayed no genetic differentiation, revealing a single connected population with larvae potentially dispersing long distances over hundreds of km. Despite this, parentage analysis performed on recruits from one focal site within the Marine Park of Arrabida (Portugal), revealed self-recruitment levels of 2.5% and 7.7% in 2011 and 2012, respectively, suggesting that both long-and short-distance dispersal play an important role in the replenishment of these populations. Population differentiation and patterns of dispersal, which were highly variable between years, could be linked to the variability inherent in local oceanographic processes. Overall, our measures of connectivity based on genetic and oceanographic data highlight the relevance of long-distance dispersal in determining the degree of connectivity, even in species with short pelagic larval durations
    corecore