27 research outputs found

    Overexpression of the Coq8 kinase in Saccharomyces cerevisiae coq null mutants allows for accumulation of diagnostic intermediates of the coenzyme Q6 biosynthetic pathway.

    Get PDF
    International audienceMost of the Coq proteins involved in coenzyme Q (ubiquinone or Q) biosynthesis are interdependent within a multiprotein complex in the yeast Saccharomyces cerevisiae. Lack of only one Coq polypeptide, as in Δcoq strains, results in the degradation of several Coq proteins. Consequently, Δcoq strains accumulate the same early intermediate of the Q(6) biosynthetic pathway; this intermediate is therefore not informative about the deficient biosynthetic step in a particular Δcoq strain. In this work, we report that the overexpression of the protein Coq8 in Δcoq strains restores steady state levels of the unstable Coq proteins. Coq8 has been proposed to be a kinase, and we provide evidence that the kinase activity is essential for the stabilizing effect of Coq8 in the Δcoq strains. This stabilization results in the accumulation of several novel Q(6) biosynthetic intermediates. These Q intermediates identify chemical steps impaired in cells lacking Coq4 and Coq9 polypeptides, for which no function has been established to date. Several of the new intermediates contain a C4-amine and provide information on the deamination reaction that takes place when para-aminobenzoic acid is used as a ring precursor of Q(6). Finally, we used synthetic analogues of 4-hydroxybenzoic acid to bypass deficient biosynthetic steps, and we show here that 2,4-dihydroxybenzoic acid is able to restore Q(6) biosynthesis and respiratory growth in a Δcoq7 strain overexpressing Coq8. The overexpression of Coq8 and the use of 4-hydroxybenzoic acid analogues represent innovative tools to elucidate the Q biosynthetic pathway

    Lowy, Michael, The Marxism of Che Guevara : Philosophy, Economics, and Revolutionary Warfare, New York and London, Monthly Review Press, 1973, 127 p.

    Get PDF
    BACKGROUND: Infants with cyanotic congenital heart disease palliated with placement of a systemic-to-pulmonary-artery shunt are at risk for shunt thrombosis and death. We investigated whether the addition of clopidogrel to conventional therapy reduces mortality from any cause and morbidity related to the shunt. METHODS: In a multicenter, double-blind, event-driven trial, we randomly assigned infants 92 days of age or younger with cyanotic congenital heart disease and a systemic-to-pulmonary-artery shunt to receive clopidogrel at a dose of 0.2 mg per kilogram of body weight per day (467 infants) or placebo (439 infants), in addition to conventional therapy (including aspirin in 87.9% of infants). The primary efficacy end point was a composite of death or heart transplantation, shunt thrombosis, or performance of a cardiac procedure due to an event considered to be thrombotic in nature before 120 days of age. RESULTS: The rate of the composite primary end point did not differ significantly between the clopidogrel group (19.1%) and the placebo group (20.5%) (absolute risk difference, 1.4 percentage points; relative risk reduction with clopidogrel, 11.1%; 95% confidence interval, -19.2 to 33.6; P=0.43), nor did the rates of the three components of the composite primary end point. There was no significant benefit of clopidogrel treatment in any subgroup, including subgroups defined by shunt type. Clopidogrel recipients and placebo recipients had similar rates of overall bleeding (18.8% and 20.2%, respectively) and severe bleeding (4.1% and 3.4%, respectively). CONCLUSIONS: Clopidogrel therapy in infants with cyanotic congenital heart disease palliated with a systemic-to-pulmonary-artery shunt, most of whom received concomitant aspirin therapy, did not reduce either mortality from any cause or shunt-related morbidity. (Funded by Sanofi-Aventis and Bristol-Myers Squibb; ClinicalTrials.gov number, NCT00396877.)

    A new gene involved in coenzyme Q biosynthesis in Escherichia coli: UbiI functions in aerobic C5-hydroxylation

    Get PDF
    International audienceCoenzyme Q (ubiquinone or Q) is a redox-active lipid found in organisms ranging from bacteria to mammals in which it plays a crucial role in energy-generating processes. Q biosynthesis is a complex pathway that involves multiple proteins. In this work, we show that the uncharacterized conserved visC gene is involved in Q biosynthesis in Escherichia coli, and we have renamed it ubiI. Based on genetic and biochemical experiments, we establish that the UbiI protein functions in the C5-hydroxylation reaction. A strain deficient in ubiI has a low level of Q and accumulates a compound derived from the Q biosynthetic pathway, which we purified and characterized. We also demonstrate that UbiI is only implicated in aerobic Q biosynthesis and that an alternative enzyme catalyzes the C5-hydroxylation reaction in the absence of oxygen. We have solved the crystal structure of a truncated form of UbiI. This structure shares many features with the canonical FAD-dependent para-hydroxybenzoate hydroxylase and represents the first structural characterization of a monooxygenase involved in Q biosynthesis. Site-directed mutagenesis confirms that residues of the flavin binding pocket of UbiI are important for activity. With our identification of UbiI, the three monooxygenases necessary for aerobic Q biosynthesis in E. coli are known

    Involvement of mitochondrial ferredoxin and para-aminobenzoic acid in yeast coenzyme Q biosynthesis.: pABA is a precursor of yeast coenzyme Q

    Get PDF
    International audienceYeast ubiquinone or coenzyme Q(6) (Q(6)) is a redox active lipid that plays a crucial role in the mitochondrial electron transport chain. At least nine proteins (Coq1p-9p) participate in Q(6) biosynthesis from 4-hydroxybenzoate (4-HB). We now show that the mitochondrial ferredoxin Yah1p and the ferredoxin reductase Arh1p are required for Q(6) biosynthesis, probably for the first hydroxylation of the pathway. Conditional Gal-YAH1 and Gal-ARH1 mutants accumulate 3-hexaprenyl-4-hydroxyphenol and 3-hexaprenyl-4-aminophenol. Para-aminobenzoic acid (pABA) is shown to be the precursor of 3-hexaprenyl-4-aminophenol and to compete with 4-HB for the prenylation reaction catalyzed by Coq2p. Yeast cells convert U-((13)C)-pABA into (13)C ring-labeled Q(6), a result that identifies pABA as a new precursor of Q(6) and implies an additional NH(2)-to-OH conversion in Q(6) biosynthesis. Our study identifies pABA, Yah1p, and Arh1p as three actors in Q(6) biosynthesis

    Biochemical and electron paramagnetic resonance study of the iron superoxide dismutase from Plasmodium falciparum.

    No full text
    Recombinant iron-containing superoxide dismutase (Fe-SOD) from Plasmodium falciparum was produced in a SOD-deficient strain of Escherichia coli, purified and characterised. The enzyme is a dimer, which contains 1.7 Fe equivalents and is sensitive to hydrogen peroxide (H(2)O(2)). Electron paramagnetic resonance (EPR) analysis showed two different signals, reflecting the presence of two different types of high-spin Fe sites with different symmetries. The role of the W71 residue during inactivation by H(2)O(2) of the P. falciparum Fe-SOD was studied by site-directed mutagenesis. First, the W71V mutation led to a change in the relative proportion of the two Fe-based EPR signals. Second, the mutant protein was almost as active as the wild-type (WT) protein but more sensitive to heat inactivation. Third, resistance to H(2)O(2) was only slightly increased indicating that W71 was marginally responsible for the sensitivity of Fe-SOD to H(2)O(2). A molecular model of the subunit was designed to assist in interpretation of the results. The fact that the parasite SOD does not belong to classes of SOD present in humans may provide a novel approach for the design of antimalarial drugs.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Clopidogrel in infants with systemic-to-pulmonary-artery shunts

    No full text
    Infants with cyanotic congenital heart disease palliated with placement of a systemic-to-pulmonary-artery shunt are at risk for shunt thrombosis and death. We investigated whether the addition of clopidogrel to conventional therapy reduces mortality from any cause and morbidity related to the shunt.status: publishe

    The O2-independent pathway of ubiquinone biosynthesis is essential for denitrification in Pseudomonas aeruginosa

    No full text
    International audienceMany proteobacteria, such as Escherichia coli, contain two main types of quinones, benzoquinones represented by ubiquinone (UQ) and naphthoquinones such as menaquinone (MK) and dimethyl-menaquinone (DMK). MK and DMK function predominantly in anaerobic respiratory chains, whereas UQ is the major electron carrier in the reduction of dioxygen. However, this division of labor is probably not very strict. Indeed, a pathway that produces UQ under anaerobic conditions in an UbiU-, UbiV-, and UbiT-dependent manner has been recently discovered in E. coli. However, its physiological relevance is not yet understood because MK and DMK are also present in E. coli. Here, we established that UQ9 is the major quinone of Pseudomonas aeruginosa and is required for growth under anaerobic respiration (i.e. denitrification). We demonstrate that the ORFs PA3911, PA3912, and PA3913, which are homologs of the E. coli ubiT, ubiV and ubiU genes, respectively, are essential for UQ9 biosynthesis and thus for denitrification in P. aeruginosa. These three genes hereafter are called ubiTPa, ubiVPa, and ubiUPa. We show that UbiVPa accommodates an iron-sulfur [4Fe-4S] cluster. Moreover, we report that UbiUPa and UbiTPa can bind UQ and that the isoprenoid tail of UQ is the structural determinant required for recognition by these two Ubi proteins. Since the denitrification metabolism of P. aeruginosa is believed to be important for pathogenicity of this bacterium in individuals with cystic fibrosis, our results highlight that the O2-independent UQ biosynthetic pathway may represent a possible target for antibiotics development to manage P. aeruginosa infections
    corecore