1,500 research outputs found

    Up the nose of the beholder? Aesthetic perception in olfaction as a decision-making process

    Get PDF
    Is the sense of smell a source of aesthetic perception? Traditional philosophical aesthetics has centered on vision and audition but eliminated smell for its subjective and inherently affective character. This article dismantles the myth that olfaction is an unsophisticated sense. It makes a case for olfactory aesthetics by integrating recent insights in neuroscience with traditional expertise about flavor and fragrance assessment in perfumery and wine tasting. My analysis concerns the importance of observational refinement in aesthetic experience. I argue that the active engagement with stimulus features in perceptual processing shapes the phenomenological content, so much so that the perceptual structure of trained smelling varies significantly from naive smelling. In a second step, I interpret the processes that determine such perceptual refinement in the context of neural decision-making processes, and I end with a positive outlook on how research in neuroscience can be used to benefit philosophical aesthetics

    Contribution of proteomics to understanding the role of tumor-derived exosomes in cancer progression: State of the art and new perspectives

    Get PDF
    Exosomes are nanometer-sized vesicles (40–100 nm diameter) of endocytic origin released from different cell types under both normal and pathological conditions. They function as cell free messengers, playing a relevant role in the cell–cell communication that is strongly related to the nature of the molecules (proteins, mRNAs, miRNAs, and lipids) that they transport. Tumor cells actively shed exosomes into their surrounding microenvironment and growing evidence indicates that these vesicles have pleiotropic functions in the regulation of tumor progression, promoting immune escape, tumor invasion, neovascularization, and metastasis. During the last few years remarkable efforts have been made to obtain an accurate definition of the protein content of tumor-derived exosomes (TDEs) by applying MS-based proteomic technologies. To date, TDEs proteomic studies have been mainly utilized to catalog TDEs proteins with the purpose of identifying disease biomarkers. The future challenge for improving our understanding and characterization of TDEs will be the implementation of new systemsdriven and proteomic integrative strategies. The aim of this article is to provide an overview of the most characterized exosomes-mediated mechanisms that contribute to the pathogenesis of cancer and to review recent proteomics data that support the protumorigenic role of TDEs

    A Study on Architectural Smells Prediction

    Get PDF
    Architectural smells can be detrimental to the system maintainability, evolvability and represent a source of architectural debt. Thus, it is very important to be able to understand how they evolved in the past and to predict their future evolution. In this paper, we evaluate if the existence of architectural smells in the past versions of a project can be used to predict their presence in the future. We analyzed four Java projects in 295 Github releases and we applied for the prediction four different supervised learning models in a repeated cross-validation setting. We found that historical architectural smell information can be used to predict the presence of architectural smells in the future. Hence, practitioners should carefully monitor the evolution of architectural smells and take preventative actions to avoid introducing them and stave off their progressive growth.</p

    Rapid Annotation of Anonymous Sequences from Genome Projects Using Semantic Similarities and a Weighting Scheme in Gene Ontology

    Get PDF
    Background: Large-scale sequencing projects have now become routine lab practice and this has led to the development of a new generation of tools involving function prediction methods, bringing the latter back to the fore. The advent of Gene Ontology, with its structured vocabulary and paradigm, has provided computational biologists with an appropriate means for this task. Methodology: We present here a novel method called ARGOT (Annotation Retrieval of Gene Ontology Terms) that is able to process quickly thousands of sequences for functional inference. The tool exploits for the first time an integrated approach which combines clustering of GO terms, based on their semantic similarities, with a weighting scheme which assesses retrieved hits sharing a certain number of biological features with the sequence to be annotated. These hits may be obtained by different methods and in this work we have based ARGOT processing on BLAST results. Conclusions: The extensive benchmark involved 10,000 protein sequences, the complete S. cerevisiae genome and a small subset of proteins for purposes of comparison with other available tools. The algorithm was proven to outperform existing methods and to be suitable for function prediction of single proteins due to its high degree of sensitivity, specificity and coverage

    Architecture Smells vs. Concurrency Bugs: an Exploratory Study and Negative Results

    Full text link
    Technical debt occurs in many different forms across software artifacts. One such form is connected to software architectures where debt emerges in the form of structural anti-patterns across architecture elements, namely, architecture smells. As defined in the literature, ``Architecture smells are recurrent architectural decisions that negatively impact internal system quality", thus increasing technical debt. In this paper, we aim at exploring whether there exist manifestations of architectural technical debt beyond decreased code or architectural quality, namely, whether there is a relation between architecture smells (which primarily reflect structural characteristics) and the occurrence of concurrency bugs (which primarily manifest at runtime). We study 125 releases of 5 large data-intensive software systems to reveal that (1) several architecture smells may in fact indicate the presence of concurrency problems likely to manifest at runtime but (2) smells are not correlated with concurrency in general -- rather, for specific concurrency bugs they must be combined with an accompanying articulation of specific project characteristics such as project distribution. As an example, a cyclic dependency could be present in the code, but the specific execution-flow could be never executed at runtime

    Application of an immunoproteomic approach to detect anti-profilin antibodies in sera of paritaria judaica allergic patients

    Get PDF
    Pollen from grasses, weeds, and trees constitutes one of the main sources of inhalant allergens frequently associated with seasonal patterns of allergic diseases. Pollen allergens show some analogies in the amino acids sequence which determine immunological similarity and cross reactivity. Parietaria judaica (P.j) pollen represents one of the main sources of allergens in the Mediterranean area and its major allergens have already been identified (Par j 1 and Par j 2). Recently, has been also described a minor allergen, profilin (Par j 3), an allergen present in pollen of trees, grasses and weeds. Allergenic plant profilins constitute a highly conserved family with sequence identities of 70% to 85% responsible for a wide range of cross-reactivity among pollens and plant foods. In this work we use an immunoproteomic approach to detect IgE antibodies against profilin in serum of P.j allergic patients

    cost effective quality assessment in industrial parts manufacturing via optical acquisition

    Get PDF
    Abstract We tackle the problem of dimensional verification via optical acquisition systems in the context of industrial manufacturing processes. Optical methods for quality inspection play a crucial part in the transition process to industry 4.0 and, despite the lack of international standardization, several solutions are available to industries that need to provide dimensional verification to their customers. Unfortunately most of these solutions are still economically unavailable to the majority of small or medium companies. In this paper we present an optical system based on low-cost components and we demonstrate that it provides useful and reliable information in quality inspection procedures

    Auditory and tactile recognition of resonant material vibrations in a passive task of bouncing perception

    Get PDF
    Besides vision and audition, everyday materials can be passively explored also using touch if they provide tactile feedback to users, for instance in consequence of an external force exciting their natural resonances. If such resonances are known to provide informative auditory cues of material, on the other hand their role when a recognition is made through touch is debatable. Even more questionable is a material recognition from their reproductions: if happening, then they could be used to enrich existing touch-screen interactions with ecological auditory and haptic feedback furthermore requiring inexpensive actuation. With this goal in mind, two experiments are proposed evaluating user\u2019s ability to classify wooden, plastic, and metallic surfaces respectively using auditory and haptic cues. Al- though the literature reports successful auditory classification of everyday material simulations, especially the passive recognition of such material reproductions by holding a finger on a vibrating glass surface has never been tested. By separately reproducing the sound and vibration of a ping-pong ball bouncing on wood, plastic and metal surfaces, our tests report not only auditory, but also tac- tile recognition of the same materials significantly above chance. Discrepancies existing between our and previously reported results are discussed

    Three-Dimensional Cell Cultures: The Bridge between In Vitro and In Vivo Models

    Get PDF
    Although historically, the traditional bidimensional in vitro cell system has been widely used in research, providing much fundamental information regarding cellular functions and signaling pathways as well as nuclear activities, the simplicity of this system does not fully reflect the heterogeneity and complexity of the in vivo systems. From this arises the need to use animals for experimental research and in vivo testing. Nevertheless, animal use in experimentation presents various aspects of complexity, such as ethical issues, which led Russell and Burch in 1959 to formulate the 3R (Replacement, Reduction, and Refinement) principle, underlying the urgent need to introduce non-animal-based methods in research. Considering this, three-dimensional (3D) models emerged in the scientific community as a bridge between in vitro and in vivo models, allowing for the achievement of cell differentiation and complexity while avoiding the use of animals in experimental research. The purpose of this review is to provide a general overview of the most common methods to establish 3D cell culture and to discuss their promising applications. Three-dimensional cell cultures have been employed as models to study both organ physiology and diseases; moreover, they represent a valuable tool for studying many aspects of cancer. Finally, the possibility of using 3D models for drug screening and regenerative medicine paves the way for the development of new therapeutic opportunities for many diseases
    • …
    corecore