

 University of Groningen

A Study on Architectural Smells Prediction
Arcelli Fontana, Francesca; Avgeriou, Paris; Pigazzini, Ilaria; Roveda, Riccardo

Published in:
Proceedings - 45th Euromicro Conference on Software Engineering and Advanced Applications, SEAA 2019

DOI:
10.1109/SEAA.2019.00057

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Arcelli Fontana, F., Avgeriou, P., Pigazzini, I., & Roveda, R. (2019). A Study on Architectural Smells
Prediction. In M. Staron, R. Capilla, & A. Skavhaug (Eds.), Proceedings - 45th Euromicro Conference on
Software Engineering and Advanced Applications, SEAA 2019 (pp. 333-337). [8906714] Institute of
Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/SEAA.2019.00057

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-10-2022

https://doi.org/10.1109/SEAA.2019.00057
https://research.rug.nl/en/publications/029493ca-8209-4526-9604-9c9de9e13f8c
https://doi.org/10.1109/SEAA.2019.00057

A Study on Architectural Smells Prediction

Francesca Arcelli Fontana
University of Milano-Bicocca

Milano, Italy

arcelli@disco.unimib.it

Paris Avgeriou
University of Groningen

Groningen, Netherland

paris@cs.rug.nl

Ilaria Pigazzini
University of Milano-Bicocca

Milano, Italy

i.pigazzini@campus.unimib.it

Riccardo Roveda
Alten Italia

Milano, Italy

riccardo.roveda@alten.it

Abstract—Architectural smells can be detrimental to system
maintainability and evolvability, and represent a source of
architectural debt. Thus, it is very important to be able to
understand how they evolved in the past and to predict their
future evolution. In this paper, we evaluate if the existence of
architectural smells in the past versions of a project can be used
to predict their presence in the future. We analyzed four Java
projects in 295 Github releases and we applied four different
supervised learning models for the prediction in a repeated cross-
validation setting. We found that historical architectural smell
information can be used to predict the presence of architectural
smells in the future. Hence, practitioners should carefully monitor
the evolution of architectural smells and take preventative actions
to avoid introducing them and stave off their progressive growth.

Index Terms—Architectural smells prediction and evolution,
architectural technical debt.

I. INTRODUCTION

Architectural smells (AS) [1], [2] correspond to architectural

decisions that negatively impact internal software quality.

Along evolution, AS may lead to a progressive architecture

degradation, erosion and architectural debt [3]. Thus, we

need to understand how AS evolved in the past and more

importantly to predict how they may evolve in the future. This

would allow us to better understand their temporal progression

and work on preventing their creation.

In this paper, we propose a prediction model that uses

historical AS data of four open source Java projects to predict

the presence of architectural smells in future versions of the

projects (for more details see Section 4). For each studied

project, we considered almost all revisions found on their

respective version control repository and we collected data

related to four architectural smells: Unstable Dependency,

Cyclic Dependency, Hub-like Dependency and Implicit Cross
Package Dependency.

The detection of the above architectural smells is performed

through a tool we had previously created, called Arcan [4]. To

optimize the prediction, we applied four different supervised

learning models in a repeated cross-validation setting and

measured the obtained performance. The results of our analysis

can be used by developers/maintainers in order to plan the

refactoring and pay particular attention to the AS that can be

used as predictors of AS in the future.

The paper is organized through the following sections: in

Section II we introduce some related work; in Section III we

briefly introduce the Arcan tool and the architectural smells

detected; in Section IV we provide the definition and setup

of our study; in Section V we present our main results for

architectural smells prediction; in Section VI we outline the

threats to validity of the work; in Section VII we conclude

with the answer to the Research Question and some future

directions of investigations.

II. RELATED WORK

We briefly introduce some related work on prediction of

quality issues. A large number of works in the literature use

history-based analysis of projects to predict different issues

that impact software quality, like code smells, changes or bugs.

Examples of works on bug prediction, include Khomh et al. [5]

who explore the presence of antipatterns for bug prediction

by analyzing multiple versions of Eclipse and ArgoUML and

Palomba et al. [6], [7] who explore if it is possible to improve

bug prediction performance using an Intensity Index for code

smells. Another example is the work of Maneerat [8] on code

smell prediction through 7 machine learning techniques by

using the number of bad-smells and software design model

metrics as data sets. Their experiments show that bad smell

prediction from software design models can predict bad smells

earlier.

Oyetoyan et al. [9] performed an empirical study on differ-

ent versions of 11 systems to analyze circular dependencies

and change proneness; they found that classes involved in

circular dependencies are more change-prone. Kouroshfar et

al. [10] assessed if co-changes spanning multiple architecture

modules are more likely to introduce bugs than co-changes

that are within modules. Diaz-Pace et al. [11] studied the

prediction of dependency-based architectural smells by look-

ing at structural system characteristics. Shahbazian et al. [12]

described an approach to automatically detect architecturally-

significant issues and classify them based on the textual

and non-textual information contained in each issue. To the

best of our knowledge, there are no works that analyze and

exploit the evolution of different architectural smells to predict

architectural smells.

III. ARCHITECTURAL SMELLS DETECTION

The detection of the AS on Java projects has been done

through the tool Arcan [4]. The tool relies on graph database

technology. Once a Java project has been analyzed by Arcan,

a new graph-database is created containing the structural

dependencies of the projects. It is then possible to run de-

tection algorithms on this graph to extract information about

333

2019 45th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)

978-1-7281-3421-5/19/$31.00 ©2019 IEEE
DOI 10.1109/SEAA.2019.00057

Authorized licensed use limited to: University of Groningen. Downloaded on February 04,2022 at 10:11:08 UTC from IEEE Xplore. Restrictions apply.

the analyzed project: package/class metrics and architectural

issues. Arcan detects the architectural smells by focusing on

instability metrics, where instability is considered as the pre-

disposition of objects to change that can be captured through

the violation of the dependency metrics of Martin [13]. Arcan

detects three architectural smells without using the history of

a project, Unstable Dependency (UD), Hub-Like Dependency

(HL), Cyclic Dependency (CD) and one based on the history

of the project, Implicit Cross Package Dependency (ICPD),

which captures hidden dependencies among files belonging

to different packages. CD smells are detected according to

their shapes as those described by Al-Mutawa et al. [14]:

tiny, clique, circle, chain and star shapes. The details of the

detection algorithms of these architectural smells can be found

in [15] and [16].

We have considered these four AS since they represent

critical problems related to dependency issues: components

that are highly-coupled and with a high number of depen-

dencies cost more to maintain and hence can be considered

more critical. In particular, the Cyclic Dependency smell is one

of the most common smells and considered the most critical

by developers [17]. Of course dependencies are not the only

source of architecture problems and architectural technical

debt; we consider other AS or debt indicators as interesting

future work.

IV. DEFINITION AND SETUP OF THE CASE STUDY

We are interested in understanding if through the history of

the existing architectural smells in the project it is possible to

predict the presence of architectural smells in future versions.

This leads to the following research question:

RQ: How well does the presence of architectural smells in
the project’s history support the prediction of architectural
smells in the future?

The answer to this RQ can help us to understand if there

is a relation between the presence of architectural smells in

past versions and future versions of the software. Developers

can exploit such information to focus their attention on the

refactoring of the involved smells. For example, if a Cyclic

Dependency is a good predictor of itself or of another kind

of smell, developers can try to remove this smell as soon

as it appears. More generally, predicting the presence of

architectural smells in the future can lead to understanding the

co-evolution of architectural smells i.e. the way they appear

and influence each other along the history of a project.

The replication package of this study is available online 1.

A. Selected projects

We analyzed four projects chosen from Github2: JGit, JU-

nit4, Commons-Math and Apache Tomcat. Table I summarizes

the main features of the analyzed projects. For every project,

we analyzed all versions (commits) available in the master
branch. We selected these projects since they are written in

1https://drive.google.com/open?id=1wfi4AJr7DC-Hjv0zw
whuhgZDqztjrxJ

2https://github.com/

Table I: Selected projects

JGit JUnit4 Commons-
Math

Apache
Tomcat

Domain library library library app server

Github releases 83 20 65 127

Versions (Commits) 4840 2187 6286 6853

Date Start 2009-09-29 2000-12-03 2003-05-03 2006-03-28

Duration (years) 8 17 15 6

Classes (first commit) 454 60 9 83

Packages (first commit) 20 10 1 77

Classes (last commit) 1315 445 1393 2218

Packages (last commit) 45 32 20 141

Java and have more than 5 years of activity, at least 2K

commits and at least 20 major releases. A dataset of projects

with all their commits compiled was not available. Hence, we

decided to create our own dataset, even if this task involved

a great time investment for problems such as managing het-

erogeneous building systems (e.g. maven, ant), code compile

errors and operating system dependent properties.

B. Predictors and class labels

Since all AS are defined at package level, but they are not

all defined at class level, we chose to work at package level:

hence each data point in our dataset will refer to a package. In

particular, since we detect AS on several versions (commits) of

a project, we will have a data point for each (version, package)

combination. For each data point, we represent each of the

four AS as a binary feature, with value 1 if the package is

involved in an architectural smell in that version, 0 otherwise.

Especially for Cyclic Dependency we also distinguish between

tiny, star, chain, circle, clique: binary fea-

tures, with value 1 if the package is involved in a cyclic

dependency of the respective type in that version, 0 otherwise.

AS features were used also as class labels i.e. as target of the

predictions. In brief, we used the information about AS in past

versions to predict AS labels in the next version.

C. Representing architectural smells in history

To be able to predict AS in future versions using the

AS detected in past versions, we have to find a suitable

representation enabling the application of prediction models

on these data. We choose to use lags to represent past data,

i.e. we associate past data to current data by adding features to

the same data point to represent both current data and the value

of the predictors in the past at different times. For example, if

we are dealing with project packages, for each package in each

version (commit) we will have some features representing AS.

If we want to use the past 12 versions (“lags”) to predict the

presence of AS in the next version, we will add to each row

(package, version) the AS features of (package, version - 1),

(package, version - 2), . . . , (package, version - 12). In this way,

every data point contains AS information about the current

version and the 12 previous versions of the same package.

334

Authorized licensed use limited to: University of Groningen. Downloaded on February 04,2022 at 10:11:08 UTC from IEEE Xplore. Restrictions apply.

Since this procedure is applied to all available versions, lags

create a “sliding window” where for each version we represent

also the information regarding a fixed amount of past versions.

In the training phase, learning models use lagged information

to model the current information. In the test phase, when using

the models to predict new AS, models will use the current and

lagged data as input. This representation is common when

dealing with multivariate time series and has the advantage

that after this pre-processing phase, where lags are created, the

remaining part of the study can be carried out as a standard

supervised learning task. We started from a representation of

the AS on each version (commit) of the analyzed project, then

we generated a variant of the dataset by aggregating by month.

In this way we can synthesize information and look at a large

timespan, i.e. more information in the past to predict further

information in the future.

D. Machine learning models and Performance estimation

We selected the following machine learning models for our

study, using R implementations: Naı̈ve Bayes3 (NB), Decision

Trees4 (C5.0), Random Forests5 (RF) and Support Vector

Machines6 (SVMs), of which we tested two particular types

provided by the R package: svmRadial (SR) and svmLinear
(SL).

For the estimation of the performance of our models, we

rely on a standard repeated k-fold cross validation procedure,

with 10 repetitions and 10 folds. Therefore, each model is

evaluated 100 times on different portions of the dataset. We

rely on the caret7 R package to perform all pre-processing,

learning and performance evaluation tasks. As performance

indexes, we use the typical indexes found in machine learning

and information retrieval in the case of supervised learning:

Accuracy and F-Measure. We computed also other metrics,

as Precision and Recall, available at the replication package
8. We consider the above indexes as ’positive’ if the AS is

present on a package, i.e. its respective feature is 1. We apply

two pre-processing transformations to the dataset before using

it for learning. First, we remove features with variance near

to zero (using the nearZeroVar() function in caret),

mostly addressing columns having only one constant value.

Then we apply SMOTE [18] sampling to balance the positive

and negative class. This technique down-samples the largest

class and synthesizes new data points in the smallest class.

Both operations are carried out with the default settings of

the caret package. We have not used SMOTE in the entire

dataset (including the test set), but only in the training set.

To support an informed comparison of the different machine

learning models performance, we apply the Wilcoxon signed

rank test [19] to the F-Measure values obtained on the 10

3https://cran.r-project.org/package=klaR
4https://cran.r-project.org/package=C50
5https://cran.r-project.org/package=randomForest
6https://cran.r-project.org/package=kernlab
7https://cran.r-project.org/package=caret
8https://drive.google.com/open?id=1wfi4AJr7DC-Hjv0zw

whuhgZDqztjrxJ

Table II: Accuracy and F-measure results of ML models

Accuracy F - Measure
AS C5.0 NB RF SL SR C5.0 NB RF SL SR

C
om

m
on

s-
M

at
h CD .995 .981 .995 .858 .823 .997 .989 .997 .537 .421

CD-chain .837 .624 .831 .765 .732 .788 .643 .783 .804 .776
CD-clique .945 .764 .942 .928 .920 .767 .384 .762 .960 .956
CD-star .897 .610 .894 .922 .922 .553 .269 .557 .958 .958
CD-tiny .845 .666 .846 .665 .676 .816 .694 .815 .706 .716
UD .669 .504 .597 .571 .699 .039 .419 .221 .685 .779
ICPD .711 .768 .712 .887 .862 .235 .211 .255 .938 .924

JG
it

CD .996 .986 .996 .999 .999 .998 .992 .998 .999 .999
CD-chain .833 .665 .846 .999 .993 .757 .437 .775 .999 .990
CD-circle .765 .630 .782 .999 .995 .756 .713 .769 .999 .994
CD-clique .953 .799 .955 .999 .997 .849 .500 .855 .999 .990
CD-star .785 .646 .800 .999 .994 .683 .443 .726 .999 .992
HL .684 .747 .753 .999 .985 .175 .211 .121 .999 .827
UD .585 .638 .732 .999 .990 .233 .255 .132 .999 .959
ICPD .671 .590 .710 .999 .981 .252 .305 .232 .999 .950

JU
ni

t

CD .998 .896 .999 .999 .958 .998 .871 .999 .999 .977
CD-chain .998 .899 .998 .999 .847 .998 .884 .998 .999 .875
CD-star .994 .753 .993 .999 .903 .995 .793 .993 .999 .622
CD-tiny .997 .884 .997 .999 .857 .997 .893 .997 .999 .724
UD .939 .587 .937 .999 .823 .943 .715 .941 .999 .524
ICPD .997 .959 .997 .999 .874 .996 .954 .997 .999 .898

To
m

ca
t CD .999 .977 .999 .999 .999 .999 .986 .999 .999 .999

CD-chain .996 .913 .997 .999 .998 .997 .933 .998 .999 .999
CD-clique .996 .793 .996 .999 .999 .982 .409 .982 .999 .995
CD-star .989 .760 .986 .999 .995 .98 .666 .976 .999 .990
ICPD .750 .620 .723 .999 .996 .292 .269 .289 .999 .978

folds of the cross validation procedure. Only performances

of different models on the same dataset (system and pre-

processing setup) are compared. Since we compare all the

models of each group, we apply a p-value correction using

Holm’s method [20]. In the discussion of the prediction results

(see Section V), the test results9 are used to understand if

the difference in the average F-Measure is significant, i.e. if

the performance of the different models is distinguishable. We

consider a significance of α < 0.05.

V. RESULTS ON PREDICTION

To answer our RQ, we analyzed if we can use the presence

of architectural smells in the history of the projects to predict

the presence of AS in the future. SVM models performed well,

hence AS evolution could be used for the prediction of AS

in the future. We report the prediction results and the most

important rules that were extracted using the data.

Table II reports computed F-measure and Accuracy metrics

of all the models analyzed on the four projects: the values

higher or equal to 0.6 are highlighted in bold, indicating the

best performances. The table reports prediction performance

of five models for the next-month setup: we used the preceding

12 lags to predict the next one, e.g. we used the features

of the last 12 months to predict the AS in the next month.

Moreover, 12 lags represent available features of the year

before the considered commit. We also experimented with

periods of 12 days and 12 weeks before the considered commit

but we discarded these options and chose to consider months,

since architectural problems tend to affect the project for a

longer period of time. The first column of the table reports

the different target AS, where for the CD smell we have

considered all the different shapes individually (chain, clique,

9https://drive.google.com/file/d/0B40F7lXuMsRaajRQR0x5SXVzbE0/
view?usp=sharing

335

Authorized licensed use limited to: University of Groningen. Downloaded on February 04,2022 at 10:11:08 UTC from IEEE Xplore. Restrictions apply.

circle, star, tiny) and globally (CD row); the second and

the third column reports namely the value of Accuracy and

F-measure achieved with the corresponding model, decision

tree (C5.0), Naı̈ve Bayes (NB), Random Forest (RF), Support

Vector Machine Linear (SL) and Support Vector Machine

Radial (SR) (see Section IV-D).

The reported performance is high with very few exceptions.

The highest performance is obtained in the prediction of Cyclic

Dependency (CD) smell and its shapes. This result could be

influenced by the class imbalance: accuracy values for NB
predictions are much lower than the others (and greater than

F-Measure) for all the projects. This means that where class

imbalance is higher, classifiers chose the largest class (absence

of AS). As for the classifiers, the best ones are SVM Linear

and SVM Radial: this conclusion is supported by the Wilcoxon

test that we conducted and explained in Section IV-D. The test

shows that p-values of SL and SR models are significant (p-

values between 0 and 0.03) for the majority of the tests. C5.0

and Random Forests are also good (value > 0.9 in average)

and have comparable performance among each other.

We analyzed rules computed by the JRip algorithm available

in Weka accessed through R using the RWeka10 package,

because we experienced that the rules extracted by JRip

are more understandable than the ones reported by C5.0,

while the latter can have higher prediction performance. We

used the rules to investigate which conditions can lead to

the creation of architectural smells. We also simplified the

training dataset, representing only the presence or absence of

architectural smells in lagged data (0 absence and 1 presence).

We discovered that the main high-level rule is that the presence

(or absence) of an architectural smell in the past is confirmed

in the future. This can be justified by the fact that, architectural

smells are large in granularity and can have a slow evolution.

We now report the most important rules that were extracted

using the data. The presence of Cyclic Dependency smells

indicates a possible presence in the future of this architectural

smell and this holds also for the absence (having high accuracy

and precision): if the cycle is not present in the history, it is

unlikely to appear in the future (97% of the time as Table III

shows). This is true for all the systems and for all the shape

types of Cyclic Dependency smells.

For example, rule (CD1 = 0) ⇒ CD = 0 was extracted

from the analysis of JGit (with 97.6% correctly classified

instances). While the rule does not indicate the way CD is

introduced or removed, it shows that the absence of CD in the

10https://cran.r-project.org/package=RWeka

Table III: Prediction performance rule of CD Smell

Instances classified by
(CD1 = 0) ⇒ CD = 0 Total number

Project Right Wrong Right(%) of instances

Commons Math 516 14 97.4% 3288
JGit 332 8 97.6% 2989
JUnit4 690 20 97.2% 6057
Tomcat 791 0 100% 5306

last month indicates its absence in the future. What we found

in JGit is confirmed also for all the other projects and for all

the shapes of CD. Table III shows the rule performance for all

the projects and indicates the total number of instances of CD

per project. Tomcat is the only project where the rule is always

true, but the other projects achieved good results with correct

classification percentage over 97%. This has some practical

implications: since the introduction of CD is rare, paying

attention in the early phases of the construction of a system

or module could decrease the possibility of incurring CD

during evolution. Obviously, since the rule does not have 100%

confidence on all projects, developers have to proactively avoid

the introduction of CD. As future work, it will be interesting

to analyze the reasons why this AS has been introduced in

the analyzed projects, i.e. the 3% of the cases where the

rule fails. Concerning Hub-Like, Unstable Dependency and

Implicit Cross Package Dependency smell, their rules were

not extracted or were not significantly relevant.

VI. THREATS TO VALIDITY

Threats to construct validity of our study may arise from the

representativeness of the measures we applied. In our analysis,

we used datasets where data points have been aggregated. In

fact, we consider data representing the projects’ characteristics

on a monthly basis, but the raw extracted data refers to single

commits. Since we applied standard aggregation approaches,

i.e. aggregating measures representing counts using the sum

and aggregating ratios using their mean, the aggregation may

have biased the dataset composition. In fact, since the original

data refers to single commits, it is not directly tied to a time

interval (such as hours, days, and weeks). By aggregating

the measures taken at irregular time intervals, we may suffer

from distortions or ”masking effects”; for example when the

same portion of code has been modified many times between

two points of interests (months in our case), we count them

differently than if we observed the state of the repository

on a monthly basis. We mitigate these possible issues by

choosing aggregation strategies keeping (as much as possible)

the original meaning of each measure. Moreover, the possible

models’ overfitting has been manually studied by tuning

different values of the k-fold cross validation parameters (i.e.

we used different k values: 3, 5 and 10) and checking the

root-mean-square error (RMSE) obtained. We can observe that

machine learning can be a viable solution to apply customized

prediction models which adapt on project-specific features by

relying on past data.

Further threats to construct validity can occur due to errors

in the data extraction and preparation phases and the accuracy

of the AS detection tool. We rely on a tool (Arcan) to extract

dependency metrics and detect architectural smells in the ana-

lyzed projects. The tool could be subjected to a systematic bias

in the detection. However, a validation of Arcan results has

been performed on two industrial projects [4], and on 10 open

source projects [15]. Furthermore, since we are predicting the

output of the tool in the future, this systematic bias, if existing,

has been incorporated into the learning models. Before using

336

Authorized licensed use limited to: University of Groningen. Downloaded on February 04,2022 at 10:11:08 UTC from IEEE Xplore. Restrictions apply.

the data extracted by the tool to perform our study, we

carefully checked its output on many different projects to

optimize the settings of the detection rules and to verify the

correctness of the tool output according to the defined rules.

Threats to reliability are partially mitigated by an elaborate

replication package and the fact that the tool is available and

can be applied to any compiled Java project.

Threats to external validity may arise from the number of

projects used in our study. The results obtained on the four

projects may not be replicable on other projects, in particular if

they do not rely on the same technology or belong to different

domains. Moreover, we only analyzed projects written in Java.

Another factor that may have affected our analysis and any

empirical study working on the evolution of software systems,

is the set of practices applied by the teams that develop the

analyzed projects.

VII. CONCLUSIONS AND FUTURE DEVELOPMENTS

In this paper we applied machine learning techniques to

predict AS based on historical information to answer one

Research Question: How well does the presence of architec-
tural smells in the project’s history support the prediction of
architectural smells in the future?

From the results obtained in the four analyzed projects, the

prediction performance is high or very high. Hence, historical

architectural smell information can be used to predict the

presence of AS in the future. In particular, we found that

CD is a good predictor of CD smells. This can be useful to

developers/maintainers: if they pay particular attention to this

AS and try to remove it as soon as the AS is introduced and

detected, they could reduce the possibility of incurring further

CD in the future.

Thus, our study encourages researchers to take AS seriously

into account when studying the underlying dynamics of soft-

ware evolution and stimulate developers to monitor software

quality through an AS detection tool during their development

and maintenance activities.

In the future, we would like to extend this study by ana-

lyzing more projects, also in other domains, to consider other

architectural smells and extend the analysis to a larger set of

lag settings, in order to have a more precise view of the predic-

tion performance further in time. We are particularly interested

in understanding and studying the co-evolution of architectural

smells. This is particularly useful to better understand the AS,

their evolution and also their removal. Through architectural

refactoring and software re-modularization we would like also

to analyze the impact of refactoring on system complexity, on

other software quality metrics and non-functional properties

(e.g., performance, security, reliability) [21]. Moreover, we

aim to extend the study according to the prediction of changes

through AS history, to check if the presence of architectural

smells in the projects evolution can be used to predict software

changes and vice-versa. We could also study the evolution of

the AS and check if a specific AS that tends to be present in

the history of a project is more critical with respect to the ones

already removed, according to some AS criticality evaluation.

REFERENCES

[1] M. Lippert and S. Roock, Refactoring in Large Software Projects:
Performing Complex Restructurings Successfully. Wiley, Apr. 2006.

[2] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, “Identifying
architectural bad smells,” in CSMR 2009. IEEE, 2009, pp. 255–258.

[3] I. Macia, R. Arcoverde, E. Cirilo, A. Garcia, and A. von Staa, “Sup-
porting the identification of architecturally-relevant code anomalies,” in
Proc. 28th IEEE Int’l Conf. Software Maintenance (ICSM 2012).

[4] F. Arcelli Fontana, I. Pigazzini, R. Roveda, D. A. Tamburri, M. Zanoni,
and E. D. Nitto, “Arcan: A tool for architectural smells detection,” in
Int’l Conf. Software Architecture (ICSA 2017) Workshops.

[5] S. E. S. Taba, F. Khomh, Y. Zou, A. E. Hassan, and M. Nagappan,
“Predicting bugs using antipatterns,” in 2013 IEEE Int’l Conf. Software
Maintenance, Sept 2013.

[6] F. Palomba, M. Zanoni, F. A. Fontana, A. D. Lucia, and R. Oliveto,
“Smells like teen spirit: Improving bug prediction performance using
the intensity of code smells,” in 2016 IEEE Int.Conf. Soft. Maint. and
Evol. (ICSME), Oct 2016, pp. 244–255.

[7] ——, “Toward a smell-aware bug prediction model,” IEEE Trans.
Software Eng., vol. 45, no. 2, pp. 194–218, 2019. [Online]. Available:
https://doi.org/10.1109/TSE.2017.2770122

[8] N. Maneerat and P. Muenchaisri, “Bad-smell prediction from software
design model using machine learning techniques,” in 2011 Eighth
International Joint Conference on Computer Science and Software
Engineering (JCSSE), May 2011, pp. 331–336.

[9] T. D. Oyetoyan, J. Falleri, J. Dietrich, and K. Jezek, “Circular dependen-
cies and change-proneness: An empirical study,” in 22nd IEEE Int.Conf.
Soft. Analysis, Evolut. and Reengineering, SANER 2015, Canada, 2015.

[10] E. Kouroshfar, M. Mirakhorli, H. Bagheri, L. Xiao, S. Malek, and Y. Cai,
“A study on the role of software architecture in the evolution and quality
of software,” in Proc. 12th Working Conf. Mining Software Repositories,
ser. MSR ’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 246–257.

[11] J. Dı́az-Pace, A. Tommasel, and D. Godoy, “Towards anticipation of
architectural smells using link prediction techniques,” in 18th IEEE
SCAM, 2018, pp. 62–71.

[12] D. M. Le, P. Behnamghader, J. Garcia, D. Link, A. Shahbazian, and
N. Medvidovic, “An empirical study of architectural change in open-
source software systems,” in 2015 IEEE/ACM 12th Working Conference
on Mining Software Repositories, May 2015, pp. 235–245.

[13] R. C. Martin, “Object oriented design quality metrics: An analysis of
dependencies,” ROAD, vol. 2, no. 3, Sept–Oct 1995.

[14] H. A. Al-Mutawa, J. Dietrich, S. Marsland, and C. McCartin, “On
the shape of circular dependencies in java programs,” in Proc. 23rd
Australian Soft. Eng. Conf. (ASWEC 2014). Sydney, Australia: IEEE.

[15] F. Arcelli Fontana, I. Pigazzini, R. Roveda, and M. Zanoni, “Automatic
detection of instability architectural smells,” in Proc. 32nd Intern. Conf.
on Software Maintenance and Evolution (ICSME 2016). Raleigh, North
Carolina, USA: IEEE, Oct. 2016.

[16] R. Roveda, F. Arcelli Fontana, I. Pigazzini, and M. Zanoni, “Towards an
architectural debt index,” in Proceedings of the Euromicro Conference
on Software Engineering and Advanced Applications (SEAA), Technical
Debt track. Prague, Czech Republic: IEEE, August 2018.

[17] A. Martini, F. Arcelli Fontana, A. Biaggi, and R. Roveda, “Identifying
and prioritizing architectural debt through architectural smells: a case
study in a large software company,” in Proc. of the European Conf. on
Software Architecture (ECSA). Madrid, Spain: Springer, Sep. 2018.

[18] K. W. Bowyer, N. V. Chawla, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: synthetic minority over-sampling technique,” CoRR, vol.
abs/1106.1813, 2011.

[19] M. Hollander and D. A. Wolfe, Nonparametric Statistical Methods,
2nd ed. New York: John Wiley & Sons, Aug. 1999.

[20] S. Holm, “A simple sequentially rejective multiple test procedure,”
Scandinavian Journal of Statistics, vol. 6, no. 2, pp. 65–70, 1979.

[21] C. Trubiani, A. Ghabi, and A. Egyed, “Exploiting traceability uncertainty
between software architectural models and extra-functional results,”
Journal of Systems and Software, vol. 125, pp. 15 – 34, 2017.

337

Authorized licensed use limited to: University of Groningen. Downloaded on February 04,2022 at 10:11:08 UTC from IEEE Xplore. Restrictions apply.

