31 research outputs found

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.

    Get PDF
    RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    The Role of Secondary Brain Insults in Status Epilepticus: A Systematic Review

    No full text
    (1) Background: Little is known about the impact of pathophysiological mechanisms that underlie the enhancement of excitotoxicity and the neuronal consequences of status epilepticus (SE), as well as the clinical consequences of secondary brain insults (SBI) in patients with SE on outcome; (2) Methods: Electronic searches were conducted in May 2020 using Medline via PubMed, Embase, and Google Scholar (#CRD42019139092). Experimental studies of animals or randomized, observational, controlled trials of patients with SE in indexed journals were included. There were no language or date restrictions for the published literature included in this review. Information was extracted on study design, sample size, SBI characteristics, and primary and secondary outcomes, including the timing of evaluation; (3) Results: Among the 2209 articles responding to our inclusion criteria, 56 were included in this systematic review. There are numerous experimental data reporting the deleterious effects associated with each of the SBI in animals exposed to SE. In humans, only the effect of target temperature management in hypothermia (32&ndash;34 &deg;C) has been explored. (4) Conclusions: There is little experimental evidence that favors the control of secondary brain insult after SE. Further studies are required to assess the neuroprotective interest of secondary brain insult control after SE in humans

    Relationship between the composition of the intestinal microbiota and the tracheal and intestinal colonization by opportunistic pathogens in intensive care patients.

    No full text
    ObjectiveInfections caused by multidrug-resistant Gram-negative bacilli (MDR-GNB) are a major issue in intensive care. The intestinal and oropharyngeal microbiota being the reservoir of MDR-GNB. Our main objective was to assess the link between the composition of the intestinal microbiota and the tracheal and intestinal colonization by MDR-GNB, and also by Enterococcus spp. and yeasts.MethodsWe performed a 2-month prospective, monocentric cohort study in the medical intensive care unit of our hospital. Patients ventilated >3 days and spontaneously passing feces were included. A fecal sample and an endotracheal aspiration (EA) were collected twice a week. MDR-GNB but also Enterococcus faecium and yeasts (as potential dysbiosis surrogate markers) were detected by culture methods. The composition of the intestinal microbiota was assessed by 16S profiling.ResultsWe collected 62 couples of feces and EA from 31 patients, including 18 feces and 9 EA positive for MDR-GNB. Forty-eight fecal samples were considered for 16S profiling. We did not observe a link between the diversity and the richness of the intestinal microbiota and the MDR-GNB intestinal relative abundance (RA). Conversely, we observed a negative link between the intestinal diversity and richness and the RA of Enterococcus spp. (pConclusionThe fecal MDR-GNB RA was not associated to the diversity nor the richness of the intestinal microbiota, but that of Enterococcus spp. was

    Comparison of Circulating Immune Cells Profiles and Kinetics Between Coronavirus Disease 2019 and Bacterial Sepsis*

    No full text
    International audienceObjectives: Although clinical presentation of coronavirus disease 2019 has been extensively described, immune response to severe acute respiratory syndrome coronavirus 2 remains yet not fully understood. Similarities with bacterial sepsis were observed; however, few studies specifically addressed differences of immune response between both conditions. Here, we report a longitudinal analysis of the immune response in coronavirus disease 2019 patients, its correlation with outcome, and comparison between severe coronavirus disease 2019 patients and septic patients.Design: Longitudinal, retrospective observational study.Setting: Tertiary-care hospital during the first 2020 coronavirus disease 2019 outbreak in France.Patients: All successive patients with confirmed severe acute respiratory syndrome coronavirus 2 infection admitted to the emergency department, medical ward, and ICU with at least one available immunophenotyping performed during hospital stay.Measurements and main results: Between March and April 2020, 247 patients with coronavirus disease 2019 were included and compared with a historical cohort of 108 severe septic patients. Nonsevere coronavirus disease 2019 patients (n = 153) presented normal or slightly altered immune profiles. Severe coronavirus disease 2019 (n = 94) immune profile differed from sepsis. Coronavirus disease 2019 exhibited profound and prolonged lymphopenia (mostly on CD3, CD4, CD8, and NK cells), neutrophilia, and human leukocyte antigen D receptor expression on CD14+ monocytes down-regulation. Surprisingly, coronavirus disease 2019 patients presented a unique profile of B cells expansion, basophilia, and eosinophilia. Lymphopenia, human leukocyte antigen D receptor expression on CD14+ monocytes down-regulation, and neutrophilia were associated with a worsened outcome, whereas basophilia and eosinophilia were associated with survival. Circulating immune cell kinetics differed between severe coronavirus disease 2019 and sepsis, lack of correction of immune alterations in coronavirus disease 2019 patients during the first 2 weeks of ICU admission was associated with death and nosocomial infections.Conclusions: Circulating immune cells profile differs between mild and severe coronavirus disease 2019 patients. Severe coronavirus disease 2019 is associated with a unique immune profile as compared with sepsis. Several immune features are associated with outcome. Thus, immune monitoring of coronavirus disease 2019 might be of help for patient management

    Innate Immune Response to LPS in Airway Epithelium Is Dependent on Chronological Age and Antecedent Exposures

    No full text
    The immune mechanisms for neonatal susceptibility to respiratory pathogens are poorly understood. Given that mucosal surfaces serve as a first line of host defense, we hypothesized that the innate immune response to infectious agents may be developmentally regulated in airway epithelium. To test this hypothesis, we determined whether the expression of IL-8 and IL-6 in airway epithelium after LPS exposure is dependent on chronological age. Tracheas from infant, juvenile, and adult rhesus monkeys were first exposed to LPS ex vivo, and then processed for air–liquid interface primary airway epithelial cell cultures and secondary LPS treatment in vitro. Compared with adult cultures, infant and juvenile cultures expressed significantly reduced concentrations of IL-8 after LPS treatment. IL-8 protein in cultures increased with animal age, whereas LPS-induced IL-6 protein was predominantly associated with juvenile cultures. Toll-like receptor (TLR) pathway RT-PCR arrays showed differential expressions of multiple mRNAs in infant cultures relative to adult cultures, including IL-1α, TLR10, and the peptidoglycan recognition protein PGLYRP2. To determine whether the age-dependent cytokine response to LPS is reflective of antecedent exposures, we assessed primary airway epithelial cell cultures established from juvenile monkeys housed in filtered air since birth. Filtered air–housed animal cultures exhibited LPS-induced IL-8 and IL-6 expression that was discordant with age-matched ambient air–housed animals. A single LPS aerosol in vivo also affected this cytokine profile. Cumulatively, our findings demonstrate that the innate immune response to LPS in airway epithelium is variable with age, and may be modulated by previous environmental exposures

    Comparison of Circulating Immune Cells Profiles and Kinetics Between Coronavirus Disease 2019 and Bacterial Sepsis

    No full text
    International audienceObjectives: Although clinical presentation of coronavirus disease 2019 has been extensively described, immune response to severe acute respiratory syndrome coronavirus 2 remains yet not fully understood. Similarities with bacterial sepsis were observed; however, few studies specifically addressed differences of immune response between both conditions. Here, we report a longitudinal analysis of the immune response in coronavirus disease 2019 patients, its correlation with outcome, and comparison between severe coronavirus disease 2019 patients and septic patients.Design: Longitudinal, retrospective observational study.Setting: Tertiary-care hospital during the first 2020 coronavirus disease 2019 outbreak in France.Patients: All successive patients with confirmed severe acute respiratory syndrome coronavirus 2 infection admitted to the emergency department, medical ward, and ICU with at least one available immunophenotyping performed during hospital stay.Measurements and main results: Between March and April 2020, 247 patients with coronavirus disease 2019 were included and compared with a historical cohort of 108 severe septic patients. Nonsevere coronavirus disease 2019 patients (n = 153) presented normal or slightly altered immune profiles. Severe coronavirus disease 2019 (n = 94) immune profile differed from sepsis. Coronavirus disease 2019 exhibited profound and prolonged lymphopenia (mostly on CD3, CD4, CD8, and NK cells), neutrophilia, and human leukocyte antigen D receptor expression on CD14+ monocytes down-regulation. Surprisingly, coronavirus disease 2019 patients presented a unique profile of B cells expansion, basophilia, and eosinophilia. Lymphopenia, human leukocyte antigen D receptor expression on CD14+ monocytes down-regulation, and neutrophilia were associated with a worsened outcome, whereas basophilia and eosinophilia were associated with survival. Circulating immune cell kinetics differed between severe coronavirus disease 2019 and sepsis, lack of correction of immune alterations in coronavirus disease 2019 patients during the first 2 weeks of ICU admission was associated with death and nosocomial infections.Conclusions: Circulating immune cells profile differs between mild and severe coronavirus disease 2019 patients. Severe coronavirus disease 2019 is associated with a unique immune profile as compared with sepsis. Several immune features are associated with outcome. Thus, immune monitoring of coronavirus disease 2019 might be of help for patient management

    Discharged patients and prognoses of caregivers after two years - Part III of the Berlin deinstitutionalisation study

    No full text
    <p>Airway epithelial cells harvested from one-year-old juvenile rhesus monkeys with prior ozone and/or LPS exposure, as described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0090401#pone-0090401-g001" target="_blank">Figure 1</a> were cultured under air-liquid interface conditions and subsequently treated with increasing doses of LPS <i>in vitro</i>. Cultures were evaluated for IL-8 mRNA (A, C) and protein (B, D) expression at 24 h post-treatment. Results show the average +/− SE. *p<0.05, **p<0.01 by two-way ANOVA comparing <i>in vivo</i> exposure and <i>in vitro</i> LPS concentration (n = 4 for each group except filtered air controls n = 5).</p

    Early Life Ozone Exposure Results in Dysregulated Innate Immune Function and Altered microRNA Expression in Airway Epithelium

    Get PDF
    <div><p>Exposure to ozone has been associated with increased incidence of respiratory morbidity in humans; however the mechanism(s) behind the enhancement of susceptibility are unclear. We have previously reported that exposure to episodic ozone during postnatal development results in an attenuated peripheral blood cytokine response to lipopolysaccharide (LPS) that persists with maturity. As the lung is closely interfaced with the external environment, we hypothesized that the conducting airway epithelium of neonates may also be a target of immunomodulation by ozone. To test this hypothesis, we evaluated primary airway epithelial cell cultures derived from juvenile rhesus macaque monkeys with a prior history of episodic postnatal ozone exposure. Innate immune function was measured by expression of the proinflammatory cytokines IL-6 and IL-8 in primary cultures established following <i>in vivo</i> LPS challenge or, in response to <i>in vitro</i> LPS treatment. Postnatal ozone exposure resulted in significantly attenuated IL-6 mRNA and protein expression in primary cultures from juvenile animals; IL-8 mRNA was also significantly reduced. The effect of antecedent ozone exposure was modulated by <i>in vivo</i> LPS challenge, as primary cultures exhibited enhanced cytokine expression upon secondary <i>in vitro</i> LPS treatment. Assessment of potential IL-6-targeting microRNAs miR-149, miR-202, and miR-410 showed differential expression in primary cultures based upon animal exposure history. Functional assays revealed that miR-149 is capable of binding to the IL-6 3′ UTR and decreasing IL-6 protein synthesis in airway epithelial cell lines. Cumulatively, our findings suggest that episodic ozone during early life contributes to the molecular programming of airway epithelium, such that memory from prior exposures is retained in the form of a dysregulated IL-6 and IL-8 response to LPS; differentially expressed microRNAs such as miR-149 may play a role in the persistent modulation of the epithelial innate immune response towards microbes in the mature lung.</p></div
    corecore