6 research outputs found

    Insulin-like growth factor-I rapidly activates multiple signal transduction pathways in cultured rat cardiac myocytes

    No full text
    In response to insulin-like growth factor-I (IGF-I), neonatal rat cardiac myocytes exhibit a hypertrophic response. The elucidation of the IGF- I signal transduction system in these cells remains unknown. We show here that cardiac myocytes present a single class of high affinity receptors (12,446 ± 3,669 binding sites/cell) with a dissociation constant of 0.36 ± 0.10 nM. Two different β-subunits of IGF-I receptor were detected, and their autophosphorylation was followed by increases in the phosphetyrosine content of extracellular signal-regulated kinases (ERKs), insulin receptor substrate 1, phospholipase C-γ1, and phosphatidylinositol 3-kinase. IGF.I transiently activates c-Raf in cultured neonatal cardiac myocytes, whereas A-raf is activated much less than c-Raf. Two peaks of ERK activity (ERK1 and ERK2) were resolved in cardiac myocytes treated with IGF-I by fast protein liquid chromatography, both being stimulated by IGF-I (with EC50 values for the stimulation of ERK1 and ERK2 by

    Biological evaluation of novel 6-Arylbenzimidazo [1,2-c] quinazoline derivatives as inhibitors of LPS-induced TNF- alpha secretion

    No full text
    This study describes the effect of novel 6-Arylbenzimidazo [1,2-c] quinazoline derivatives as tumor necrosis factor alpha (TNF-á) production inhibitors. The newly synthesized compounds were tested for their in vitro ability to inhibit the lipolysaccharide (LPS) induced TNF-á secretion in the human promyelocytic cell line HL-60. The compound 6-Phenyl-benzimidazo [1,2-c] quinazoline, coded as Gl, resulted as the most potent inhibitor and with no significant cytotoxic activity. Thus, 6-Arylbenzimidazo [1,2-c] quinazoline derivatives may have a potential as anti-inflammatory agent

    Cyclic AMP-dependent protein kinase and mechanical heart function in ventricular hypertrophy induced by pressure overload or secondary to myocardial infarction

    No full text
    The role of cyclic AMP-dependent protein kinase (PKA) and systolic function during the development of left ventricular hypertrophy (LVH) still remain uncertain. The aim of this work is to study PKA activity and mechanical heart function in two experimental heart hypertrophy models: specifically, one induced by pressure overload (Goldblatt model: two kidneys, one clamped, Gb); and another secondary to myocardial infarction (MI) generated by ligation of the left coronary artery. Hypertension in the Gb group becomes evident by the third and fourth week after surgery without any significant change in the corresponding sham group. The myocardial infarction group did not show any change in systolic pressure. Different degrees of LVH for the two experimental models were observed. Relative cardiac mass (RCM) and relative ventricular mass (RVM) increased 23 and 16%, respectively, above the sham-operated rats in MI group (P<0.05). For the pressure overload model, the increase values were 42 an

    Extracellular regulated kinase, but not protein kinase C, is an antiapoptotic signal of insulin-like growth factor-1 on cultured cardiac myocytes

    No full text
    This study aims to elucidate the signaling pathway for insulin-like growth factor-1 (IGF-1) in cultured neonatal rat cardiomyocytes and particularly the role of IGF-1 in cardiac apoptosis, IGF-1 stimulated polyphosphoinositide turnover, translocation of protein kinase C (PKC) isoforms (alpha, epsilon, and delta) from the soluble to the particulate fraction, activation of phospholipid-dependent and Ca2+-, phospholipid-dependent PKC, and activation of the extracellular-regulated kinase (ERK), IGF-1 attenuated sorbitol-induced cardiomyocyte viability and nuclear DNA fragmentation, These antiapoptotic effects of IGF-1 were blocked by PD098059 (an MEK inhibitor) but not by bisindolylmaleimide I (BIM, a specific PKC inhibitor), The ERK pathway may therefore be an important component in the mechanism whereby IGF-1 exerts its antiapoptotic effect on the cardiomyocyte
    corecore