240 research outputs found

    PTEN deficiency and mutant p53 confer glucose-addiction to thyroid cancer cells: impact of glucose depletion on cell proliferation, cell survival, autophagy and cell migration.

    Get PDF
    Proliferating cancer cells oxidize glucose through the glycolytic pathway. Since this metabolism is less profitable in terms of ATP production, cancer cells consume large quantity of glucose, and those that experience insufficient blood supply become glucose-addicted. We have analyzed the response to glucose depletion in WRO and FTC133 follicular thyroid cancer cells, which differ in the expression of two key regulators of the glucose metabolism. WRO cells, which express wild type p53 and PTEN, showed a higher rate of cell proliferation and were much less sensitive to glucose-depletion than FTC133 cells, which are PTEN null and express mutant p53. Glucose depletion slowed-down the autophagy flux in FTC133 cells, not in WRO cells. In a wound-healing assay, WRO cells were shown to migrate faster than FTC133 cells. Glucose depletion slowed down the cell migration rate, and these effects were more evident in FTC133 cells. Genetic silencing of either wild-type PTEN or p53 in WRO cells resulted in increased uptake of glucose, whereas the ectopic expression of PTEN in FTC133 cells resulted in diminished glucose uptake. In conclusion, compared to WRO, FTC133 cells were higher glucose up-taker and consumer. These data do not support the general contention that cancer cells lacking PTEN or expressing the mutant p53R273H are more aggressive and prone to better face glucose depletion. We propose that concurrent PTEN deficiency and mutant p53 leads to a glucose-addiction state that renders the cancer cell more sensitive to glucose restriction. The present observation substantiates the view that glucose-restriction may be an adjuvant strategy to combat these tumours

    A Multiple Model Based Approach for Deep Space Power System Fault Diagnosis

    Get PDF
    Improving protection and health management capabilities onboard the electrical power system (EPS) for spacecraft is essential for ensuring safe and reliable conditions for deep space human exploration. Electrical protection and control technologies on the National Aeronautics and Space Administration's (NASA's) current human space platform relies heavily on ground support to monitor and diagnose power systems and failures. As communication bandwidth diminishes for deep space applications, a transformation in system monitoring and control becomes necessary to maintain high reliability of electric power service. This paper presents a novel approach for on-line power system security monitoring for autonomous deep space spacecraft

    An Autonomous Power Controller for the NASA Human Deep Space Gateway

    Get PDF
    Autonomous control of a spacecraft is an enabling technology that must be developed for deep space human exploration. NASA's current long term human space platform, the International Space Station which is in Low Earth Orbit, is in almost continuous communication with ground based mission control. This allows near real-time control of all the vehicle core systems, including power, to be controlled by the ground. As the focus shifts from Low Earth Orbit, communication time-lag and bandwidth limitations beyond geosynchronous orbit does not permit this type of ground based operation. This paper presents the ongoing work at NASA to develop an architecture for autonomous power control system and a vehicle manager which monitors, coordinates, and delegates all the onboard subsystems to enable autonomous control of the complete spacecraft

    Radio-Frequency Tank Eigenmode Sensor for Propellant Quantity Gauging

    Get PDF
    Although there are several methods for determining liquid level in a tank, there are no proven methods to quickly gauge the amount of propellant in a tank while it is in low gravity or under low-settling thrust conditions where propellant sloshing is an issue. Having the ability to quickly and accurately gauge propellant tanks in low-gravity is an enabling technology that would allow a spacecraft crew or mission control to always know the amount of propellant onboard, thus increasing the chances for a successful mission. The Radio Frequency Mass Gauge (RFMG) technique measures the electromagnetic eigenmodes, or natural resonant frequencies, of a tank containing a dielectric fluid. The essential hardware components consist of an RF network analyzer that measures the reflected power from an antenna probe mounted internal to the tank. At a resonant frequency, there is a drop in the reflected power, and these inverted peaks in the reflected power spectrum are identified as the tank eigenmode frequencies using a peak-detection software algorithm. This information is passed to a pattern-matching algorithm, which compares the measured eigenmode frequencies with a database of simulated eigenmode frequencies at various fill levels. A best match between the simulated and measured frequency values occurs at some fill level, which is then reported as the gauged fill level. The database of simulated eigenmode frequencies is created by using RF simulation software to calculate the tank eigenmodes at various fill levels. The input to the simulations consists of a fairly high-fidelity tank model with proper dimensions and including internal tank hardware, the dielectric properties of the fluid, and a defined liquid/vapor interface. Because of small discrepancies between the model and actual hardware, the measured empty tank spectra and simulations are used to create a set of correction factors for each mode (typically in the range of 0.999 1.001), which effectively accounts for the small discrepancies. These correction factors are multiplied to the modes at all fill levels. By comparing several measured modes with the simulations, it is possible to accurately gauge the amount of propellant in the tank. An advantage of the RFMG approach of applying computer simulations and a pattern-matching algorithm is that the Although there are several methods for determining liquid level in a tank, there are no proven methods to quickly gauge the amount of propellant in a tank while it is in low gravity or under low-settling thrust conditions where propellant sloshing is an issue. Having the ability to quickly and accurately gauge propellant tanks in low-gravity is an enabling technology that would allow a spacecraft crew or mission control to always know the amount of propellant onboard, thus increasing the chances for a successful mission. The Radio Frequency Mass Gauge (RFMG) technique measures the electromagnetic eigenmodes, or natural resonant frequencies, of a tank containing a dielectric fluid. The essential hardware components consist of an RF network analyzer that measures the reflected power from an antenna probe mounted internal to the tank. At a resonant frequency, there is a drop in the reflected power, and these inverted peaks in the reflected power spectrum are identified as the tank eigenmode frequencies using a peak-detection software algorithm. This information is passed to a pattern-matching algorithm, which compares the measured eigenmode frequencies with a database of simulated eigenmode frequencies at various fill levels. A best match between the simulated and measured frequency values occurs at some fill level, which is then reported as the gauged fill level. The database of simulated eigenmode frequencies is created by using RF simulation software to calculate the tank eigenmodes at various fill levels. The input to the simulations consists of a fairly high-fidelity tank model with proper dimensions and including internal tank harare, the dielectric properties of the fluid, and a defined liquid/vapor interface. Because of small discrepancies between the model and actual hardware, the measured empty tank spectra and simulations are used to create a set of correction factors for each mode (typically in the range of 0.999 1.001), which effectively accounts for the small discrepancies. These correction factors are multiplied to the modes at all fill levels. By comparing several measured modes with the simulations, it is possible to accurately gauge the amount of propellant in the tank. An advantage of the RFMG approach of applying computer simulations and a pattern-matching algorithm is that th

    Clonal Activation of Akt in Low-Risk MDS Patients with Del(5q) treated with Lenalidomide

    Get PDF
    The activation of inositide signalling pathways, such as Akt/mTOR, has been demonstrated in high-risk MDS (1). Lenalidomide is currently used in the treatment of del(5q) low-risk MDS patients, where it may suppress the del(5q) clone and restore a normal erythropoiesis, via inhibition of Akt phosphorylation (2). Here, we studied the expression of inositide signalling molecules in 6 low-risk MDS patients who were given Lenalidomide by immunocytochemistry and Real-Time PCR. In our case series, 4 out of 6 del(5q) low-risk MDS patients responded to Lenalidomide and showed an activation of erythropoiesis, in that Beta-Globin levels increased, as compared with baseline. Moreover, these subjects also displayed an activation of PI-PLCgamma1 and Akt. Interestingly, Akt resulted to be specifically phosphorylated in cells not showing the 5q deletion, hinting at a clonal activation of this pathway. The 2 non responder patients early discontinued Lenalidomide for adverse events, and for these patients neither a clinical assessment of Lenalidomide effect, nor a molecular analysis, were possible. Our data show Akt/PI-PLCgamma1 activation during Lenalidomide treatment, and confirm the activation of erythropoiesis in responder patients. In addition, our results indicate that Akt is specifically phosphorylated in the 5q+ clone. Therefore, it is conceivable that Lenalidomide strengthens the proliferation of the 5q+ clone, whilst the del(5q) clone undergoes an apoptotic process, allowing the restoration of the normal erythropoiesis. This is extremely important, not only for MDS pathogenesis, but also for the development of innovative targeted therapies

    Modulating Phosphoinositide Profiles as a Roadmap for Treatment in Acute Myeloid Leukemia

    Get PDF
    Polyphosphoinositides (PPIns) and their modulating enzymes are involved in regulating many important cellular functions including proliferation, differentiation or gene expression, and their deregulation is involved in human diseases such as metabolic syndromes, neurodegenerative disorders and cancer, including Acute Myeloid Leukemia (AML). Given that PPIns regulating enzymes are highly druggable targets, several studies have recently highlighted the potential of targeting them in AML. For instance many inhibitors targeting the PI3K pathway are in various stages of clinical development and more recently other novel enzymes such as PIP4K2A have been implicated as AML targets. PPIns have distinct subcellular organelle profiles, in part driven by the specific localisation of enzymes that metabolise them. In particular, in the nucleus, PPIns are regulated in response to various extracellular and intracellular pathways and interact with specific nuclear proteins to control epigenetic cell state. While AML does not normally manifest with as many mutations as other cancers, it does appear in large part to be a disease of dysregulation of epigenetic signalling and many novel therapeutics are aimed at reprogramming AML cells toward a differentiated cell state or to one that is responsive to alternative successful but limited AML therapies such as ATRA. Here, we propose that by combining bioinformatic analysis with inhibition of PPIns pathways, especially within the nucleus, we might discover new combination therapies aimed at reprogramming transcriptional output to attenuate uncontrolled AML cell growth. Furthermore, we outline how different part of a PPIns signalling unit might be targeted to control selective outputs that might engender more specific and therefore less toxic inhibitory outcomes

    Neurodegeneration and Epilepsy in a Zebrafish Model of CLN3 Disease (Batten Disease)

    Get PDF
    The neuronal ceroid lipofuscinoses are a group of lysosomal storage disorders that comprise the most common, genetically heterogeneous, fatal neurodegenerative disorders of children. They are characterised by childhood onset, visual failure, epileptic seizures, psychomotor retardation and dementia. CLN3 disease, also known as Batten disease, is caused by autosomal recessive mutations in the CLN3 gene, 80–85% of which are a ~1 kb deletion. Currently no treatments exist, and after much suffering, the disease inevitably results in premature death. The aim of this study was to generate a zebrafish model of CLN3 disease using antisense morpholino injection, and characterise the pathological and functional consequences of Cln3 deficiency, thereby providing a tool for future drug discovery. The model was shown to faithfully recapitulate the pathological signs of CLN3 disease, including reduced survival, neuronal loss, retinopathy, axonopathy, loss of motor function, lysosomal storage of subunit c of mitochondrial ATP synthase, and epileptic seizures, albeit with an earlier onset and faster progression than the human disease. Our study provides proof of principle that the advantages of the zebrafish over other model systems can be utilised to further our understanding of the pathogenesis of CLN3 disease and accelerate drug discovery

    Outcomes in culture positive and culture negative ascitic fluid infection in patients with viral cirrhosis: cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ascitic fluid infection (AFI) in cirrhotic patients has a high morbidity and mortality. It has two variants namely, spontaneous bacterial peritonitis (SBP) and culture negative neutrocytic ascites (CNNA). The aim of this study was to determine the outcome in cirrhotic patients with culture positive (SBP) and culture negative neutrocytic ascites.</p> <p>Methods</p> <p>We analyzed 675 consecutive hepatitis B and/or C related cirrhosis patients with ascites admitted in our hospital from November 2005 to December 2007. Of these, 187 patients had AFI; clinical and laboratory parameters of these patients including causes of cirrhosis, Child Turcotte Pugh (CTP) score were recorded.</p> <p>Results</p> <p>Out of 187 patients with AFI, 44 (23.5%) had SBP while 143 (76.4%) had CNNA. Hepatitis C virus (HCV) infection was the most common cause of cirrhosis in 139 (74.3%) patients. Patients with SBP had high CTP score as compared to CNNA (12.52 ± 1.45 vs. 11.44 ± 1.66); p < 0.001. Platelets count was low in patients with SBP (101 ± 53 × 10<sup>9</sup>/L) as compared to CNNA (132 ± 91 × 10<sup>9</sup>/L), p = 0.005. We found a high creatinine (mg/dl) (1.95 ± 1.0 vs. 1.44 ± 0.85), (p = 0.003) and high prothrombin time (PT) in seconds (24.8 ± 6.6 vs. 22.4 ± 7.2) (p = 0.04) in SBP as compared to CNNA. More patients with SBP (14/44; 31.8%) had blood culture positivity as compare to CNNA (14/143; 9.8%), p = 0.002. Escherichia. Coli was the commonest organism in blood culture in 15/28 (53.5%) patients. SBP group had a higher mortality (11/44; 25%) as compared to CNNA (12/143; 8.4%), p = 0.003. On multiple logistic regression analysis, creatinine >1.1 mg/dl and positive blood culture were the independent predictors of mortality in patients with SBP.</p> <p>Conclusion</p> <p>Patients with SBP have a higher mortality than CNNA. Independent predictors of mortality in SBP are raised serum creatinine and a positive blood culture.</p

    Knock-Down of Cathepsin D Affects the Retinal Pigment Epithelium, Impairs Swim-Bladder Ontogenesis and Causes Premature Death in Zebrafish

    Get PDF
    The lysosomal aspartic protease Cathepsin D (CD) is ubiquitously expressed in eukaryotic organisms. CD activity is essential to accomplish the acid-dependent extensive or partial proteolysis of protein substrates within endosomal and lysosomal compartments therein delivered via endocytosis, phagocytosis or autophagocytosis. CD may also act at physiological pH on small-size substrates in the cytosol and in the extracellular milieu. Mouse and fruit fly CD knock-out models have highlighted the multi-pathophysiological roles of CD in tissue homeostasis and organ development. Here we report the first phenotypic description of the lack of CD expression during zebrafish (Danio rerio) development obtained by morpholino-mediated knock-down of CD mRNA. Since the un-fertilized eggs were shown to be supplied with maternal CD mRNA, only a morpholino targeting a sequence containing the starting ATG codon was effective. The main phenotypic alterations produced by CD knock-down in zebrafish were: 1. abnormal development of the eye and of retinal pigment epithelium; 2. absence of the swim-bladder; 3. skin hyper-pigmentation; 4. reduced growth and premature death. Rescue experiments confirmed the involvement of CD in the developmental processes leading to these phenotypic alterations. Our findings add to the list of CD functions in organ development and patho-physiology in vertebrates
    • …
    corecore