191 research outputs found

    Re-expression of IGF-II is important for beta cell regeneration in adult mice

    Get PDF
    Background The key factors which support re-expansion of beta cell numbers after injury are largely unknown. Insulin-like growth factor II (IGF-II) plays a critical role in supporting cell division and differentiation during ontogeny but its role in the adult is not known. In this study we investigated the effect of IGF-II on beta cell regeneration. Methodology/Principal Findings We employed an in vivo model of ‘switchable’ c-Myc-induced beta cell ablation, pIns-c-MycERTAM, in which 90% of beta cells are lost following 11 days of c-Myc (Myc) activation in vivo. Importantly, such ablation is normally followed by beta cell regeneration once Myc is deactivated, enabling functional studies of beta cell regeneration in vivo. IGF-II was shown to be re-expressed in the adult pancreas of pIns-c-MycERTAM/IGF-II+/+ (MIG) mice, following beta cell injury. As expected in the presence of IGF-II beta cell mass and numbers recover rapidly after ablation. In contrast, in pIns-c-MycERTAM/IGF-II+/− (MIGKO) mice, which express no IGF-II, recovery of beta cell mass and numbers were delayed and impaired. Despite failure of beta cell number increase, MIGKO mice recovered from hyperglycaemia, although this was delayed. Conclusions/Significance Our results demonstrate that beta cell regeneration in adult mice depends on re-expression of IGF-II, and supports the utility of using such ablation-recovery models for identifying other potential factors critical for underpinning successful beta cell regeneration in vivo. The potential therapeutic benefits of manipulating the IGF-II signaling systems merit further exploration

    Biliary pancreatic diversion and laparoscopic adjustable gastric banding in morbid obesity: their long-term effects on metabolic syndrome and on cardiovascular parameters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bariatric surgery is able to improve glucose and lipid metabolism, and cardiovascular function in morbid obesity. Aim of this study was to compare the long-term effects of malabsorptive (biliary pancreatic diversion, BPD), and restrictive (laparoscopic gastric banding, LAGB) procedures on metabolic and cardiovascular parameters, as well as on metabolic syndrome in morbidly obese patients.</p> <p>Methods</p> <p>170 patients studied between 1989 and 2001 were called back after a mean period of 65 months. 138 patients undergoing BPD (n = 23) or LAGB (n = 78), and control patients (refusing surgery and treated with diet, n = 37) were analysed for body mass index (BMI), blood glucose, cholesterol, and triglycerides, blood pressure, heart rate, and ECG indexes (QTc, Cornell voltage-duration product, and rate-pressure-product).</p> <p>Results</p> <p>After a mean 65 months period, surgery was more effective than diet on all items under evaluation; diabetes, hypertension, and metabolic syndrome disappeared more in surgery than in control patients, and new cases appeared only in controls. BPD was more effective than LAGB on BMI, on almost all cardiovascular parameters, and on cholesterol, not on triglyceride and blood glucose. Disappearance of diabetes, hypertension, and metabolic syndrome was similar with BPD and with LAGB, and no new cases were observed.</p> <p>Conclusion</p> <p>These data indicate that BPD, likely due to a greater BMI decrease, is more effective than LAGB in improving cardiovascular parameters, and similar to LAGB on metabolic parameters, in obese patients. The greater effect on cholesterol levels is probably due to the different mechanism of action.</p

    Sclerostin and Insulin Resistance in Prediabetes: Evidence of a Cross Talk Between Bone and Glucose Metabolism

    Get PDF
    A gene mutation of the Wnt/β-catenin signaling cascade is present in rare patients with the insulin resistance syndrome. Sclerostin is a circulating peptide inhibiting Wnt/β-catenin signaling. Our aims were to evaluate serum sclerostin in subjects with prediabetes and to analyze its relationship with insulin resistance and β-cell function

    The GLP-1 receptor agonists exenatide and liraglutide activate Glucose transport by an AMPK-dependent mechanism

    Get PDF
    Additional file 2: Figure S2. Effects of EXE on Glut-4 in cultured L6 myotubes. Myotubes were stimulated with 100 nmol/l EXE for 20 min or 48 h. Panel A shows qPCR of Glut-4 mRNA. In panel B is a representative western blot for Glut-4 and β-Actin (loading control). In panel C is a representative western blot for Glut-4 and β-IR (loading control) in plasma membrane (PM) extracts (Glut-4 translocation). For A and C panels, data are shown as fold increase over control ± SD of three independent experiments (*p < 0.001, vs Ctrl)

    Central GIP signaling stimulates peripheral GIP release and promotes insulin and pancreatic polypeptide secretion in nonhuman primates

    Get PDF
    Glucose-dependent insulinotropic polypeptide (GIP) has important actions on whole body metabolic function. GIP and its receptor are also present in the central nervous system and have been linked to neurotrophic actions. Metabolic effects of central nervous system GIP signaling have not been reported. We investigated whether centrally administered GIP could increase peripheral plasma GIP concentrations and influence the metabolic response to a mixed macronutrient meal in nonhuman primates. An infusion and sampling system was developed to enable continuous intracerebroventricular (ICV) infusions with serial venous sampling in conscious nonhuman primates. Male baboons (Papio sp.) that were healthy and had normal body weights (28.9 ± 2.1 kg) were studied (n = 3). Animals were randomized to receive continuous ICV infusions of GIP (20 pmol·kg−1·h−1) or vehicle before and over the course of a 300-min mixed meal test (15 kcal/kg, 1.5g glucose/kg) on two occasions. A significant increase in plasma GIP concentration was observed under ICV GIP infusion (66.5 ± 8.0 vs. 680.6 ± 412.8 pg/ml, P = 0.04) before administration of the mixed meal. Increases in postprandial, but not fasted, insulin (P = 0.01) and pancreatic polypeptide (P = 0.04) were also observed under ICV GIP. Effects of ICV GIP on fasted or postprandial glucagon, glucose, triglyceride, and free fatty acids were not observed. Our data demonstrate that central GIP signaling can promote increased plasma GIP concentrations independent of nutrient stimulation and increase insulin and pancreatic polypeptide responses to a mixed meal

    Autoantibodies against the glial glutamate transporter GLT1/EAAT2 in Type 1 diabetes mellitus-Clues to novel immunological and non-immunological therapies

    Get PDF
    : Islet cell surface autoantibodies were previously found in subjects with type 1 diabetes mellitus (T1DM), but their target antigens and pathogenic mechanisms remain elusive. The glutamate transporter solute carrier family 1, member 2 (GLT1/EAAT2) is expressed on the membrane of pancreatic β-cells and physiologically controls extracellular glutamate concentrations thus preventing glutamate-induced β-cell death. We hypothesized that GLT1 could be an immunological target in T1DM and that autoantibodies against GLT1 could be pathogenic. Immunoprecipitation and ELISA experiments showed that sera from T1DM subjects recognized GLT1 expressed in brain, pancreatic islets, and GLT1-transfected COS7-cell extracts. We validated these findings in two cohorts of T1DM patients by quantitative immunofluorescence assays. Analysis of the combined data sets indicated the presence of autoantibodies against GLT1 in 32 of the 87 (37%) T1DM subjects and in none of healthy controls (n&nbsp;=&nbsp;64) (p&nbsp;&lt;&nbsp;0.0001). Exposure of pancreatic βTC3 cells and human islets to purified IgGs from anti-GLT1 positive sera supplemented with complement resulted in plasma membrane ruffling, cell lysis and death. The cytotoxic effect was prevented when sera were depleted from IgGs. Furthermore, in the absence of complement, 6 out of 16 (37%) anti-GLT1 positive sera markedly reduced GLT1 transport activity in βTC3 cells by inducing GLT1 internalization, also resulting in β-cell death. In conclusion, we provide evidence that GLT1 is a novel T1DM autoantigen and that anti-GLT1 autoantibodies cause β-cell death through complement-dependent and independent mechanisms. GLT1 seems an attractive novel therapeutic target for the prevention of β-cell death in individuals with diabetes and prediabetes

    Predictive models of insulin resistance derived from simple morphometric and biochemical indices related to obesity and the metabolic syndrome in baboons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-human primates are valuable models for the study of insulin resistance and human obesity. In baboons, insulin sensitivity levels can be evaluated directly with the euglycemic clamp and is highly predicted by adiposity, metabolic markers of obesity and impaired glucose metabolism (i.e. percent body fat by DXA and HbA<sub>1c</sub>). However, a simple method to screen and identify obese insulin resistant baboons for inclusion in interventional studies is not available.</p> <p>Methods</p> <p>We studied a population of twenty baboons with the euglycemic clamp technique to characterize a population of obese nondiabetic, insulin resistant baboons, and used a multivariate linear regression analysis (adjusted for gender) to test different predictive models of insulin sensitivity (insulin-stimulated glucose uptake = Rd) using abdominal circumference and fasting plasma insulin. Alternatively, we tested in a separate baboon population (n = 159), a simpler model based on body weight and fasting plasma glucose to predict the whole-body insulin sensitivity (Rd/SSPI) derived from the clamp.</p> <p>Results</p> <p>In the first model, abdominal circumference explained 59% of total insulin mediated glucose uptake (Rd). A second model, which included fasting plasma insulin (log transformed) and abdominal circumference, explained 64% of Rd. Finally, the model using body weight and fasting plasma glucose explained 51% of Rd/SSPI. Interestingly, we found that percent body fat was directly correlated with the adipocyte insulin resistance index (r = 0.755, p < 0.0001).</p> <p>Conclusion</p> <p>In baboons, simple morphometric measurements of adiposity/obesity, (i.e. abdominal circumference), plus baseline markers of glucose/lipid metabolism, (i.e. fasting plasma glucose and insulin) provide a feasible method to screen and identify overweight/obese insulin resistant baboons for inclusion in interventional studies aimed to study human obesity, insulin resistance and type 2 diabetes mellitus.</p

    Proteomics Reveals Novel Oxidative and Glycolytic Mechanisms in Type 1 Diabetic Patients' Skin Which Are Normalized by Kidney-Pancreas Transplantation

    Get PDF
    Background: In type 1 diabetes (T1D) vascular complications such as accelerated atherosclerosis and diffused macro-/microangiopathy are linked to chronic hyperglycemia with a mechanism that is not yet well understood. End-stage renal disease (ESRD) worsens most diabetic complications, particularly, the risk of morbidity and mortality from cardiovascular disease is increased several fold. Methods and Findings: We evaluated protein regulation and expression in skin biopsies obtained from T1D patients with and without ESRD, to identify pathways of persistent cellular changes linked to diabetic vascular disease. We therefore examined pathways that may be normalized by restoration of normoglycemia with kidney-pancreas (KP) transplantation. Using proteomic and ultrastructural approaches, multiple alterations in the expression of proteins involved in oxidative stress (catalase, superoxide dismutase 1, Hsp27, Hsp60, ATP synthase δ chain, and flavin reductase), aerobic and anaerobic glycolysis (ACBP, pyruvate kinase muscle isozyme, and phosphoglycerate kinase 1), and intracellular signaling (stratifin-14-3-3, S100-calcyclin, cathepsin, and PPI rotamase) as well as endothelial vascular abnormalities were identified in T1D and T1D+ESRD patients. These abnormalities were reversed after KP transplant. Increased plasma levels of malondialdehyde were observed in T1D and T1D+ESRD patients, confirming increased oxidative stress which was normalized after KP transplant. Conclusions: Our data suggests persistent cellular changes of anti-oxidative machinery and of aerobic/anaerobic glycolysis are present in T1D and T1D+ESRD patients, and these abnormalities may play a key role in the pathogenesis of hyperglycemia-related vascular complications. Restoration of normoglycemia and removal of uremia with KP transplant can correct these abnormalities. Some of these identified pathways may become potential therapeutic targets for a new generation of drugs

    Effects of Weight Loss in Metabolically Healthy Obese Subjects after Laparoscopic Adjustable Gastric Banding and Hypocaloric Diet

    Get PDF
    Weight loss in metabolically healthy obese (MHO) subjects may result in deterioration of cardio-metabolic risk profile. We analyzed the effects of weight loss induced by laparoscopic adjustable gastric banding (LAGB) on cardio-metabolic risk factors in MHO and insulin resistant obese (IRO) individuals. This study included 190 morbidly obese non-diabetic subjects. Obese individuals were stratified on the basis of their insulin sensitivity index (ISI), estimated from an OGTT, into MHO (ISI index in the upper quartile) and IRO (ISI in the three lower quartiles). Anthropometric and cardio-metabolic variables were measured at baseline and 6-months after LAGB. Six months after LAGB, anthropometric measures were significantly reduced in both MHO and IRO. Percent changes in body weight, BMI, and waist circumference did not differ between the two groups. Fasting glucose and insulin levels, triglycerides, AST, and ALT were significantly reduced, and HDL cholesterol significantly increased, in both MHO and IRO subjects with no differences in percent changes from baseline. Insulin sensitivity increased in both MHO and IRO group. Insulin secretion was significantly reduced in the IRO group only. However, the disposition index significantly increased in both MHO and IRO individuals with no differences in percent changes from baseline between the two groups. The change in insulin sensitivity correlated with the change in BMI (r = −0.43; P<0.0001). In conclusion, our findings reinforce the recommendation that weight loss in response to LAGB intervention should be considered an appropriate treatment option for morbidly obese individuals regardless of their metabolic status, i.e. MHO vs. IRO subjects
    • …
    corecore