832 research outputs found

    Transition from Contraction to Extension in the Northeastern Basin and Range: New Evidence from the Copper Mountains, Nevada

    Get PDF
    New mapping, structural analysis, and 40Ar/39Ar dating reveal an unusually well‐constrained history of Late Eocene extension in the Copper Mountains of the northern Basin and Range province. In this area, the northeast‐trending Copper Creek normal fault juxtaposes a distinctive sequence of metacarbonate and granitoid rocks against a footwall of Upper Precambrian to Lower Cambrian quartzite and phyllite. Correlation of the hanging wall with footwall rocks to the northwest provides an approximate piercing point that requires 8–12 km displacement in an ESE direction. This displaced fault slice is itself bounded above by another normal fault (the Meadow Fork Fault), which brings down a hanging wall of dacitic to rhyolitic tuff that grades conformably upward into conglomerate. These relationships record the formation of a fault‐bounded basin between 41.3 and 37.4 Ma. The results are consistent with a regional pattern in which volcanism and extension swept southward from British Columbia to southern Nevada from Early Eocene to Late Oligocene time. Because the southward sweep of volcanism is thought to track the steepening and foundering of the downgoing oceanic plate, these results suggest that the crucial mechanisms for the onset of regional extension were probably changes in plate boundary conditions coupled with convective removal of mantle lithosphere and associated regional magmatism and lithospheric weakening. Paleobotanical data indicate that surface elevations in northeastern Nevada were not significantly different than at present, suggesting that gravitational instability of overthickened continental crust was not the dominant force driving the onset of crustal thinning in mid‐Tertiary time

    Formation of Uniaxial Molecular Films by Liquid-Crystal Imprinting in a Magnetic Field

    Get PDF
    Scanning tunneling microscopy was used to study molecular order in monolayer organic films formed by solution-phase growth from thermotropic liquid crystal solvents. The films develop macroscopically uniaxial alignment, with adlayer orientation controlled by an external magnetic field through interactions mediated by the liquid crystal. Results are presented for two films deposited from nematic and smectic- A solvents, along with a discussion of the alignment mechanism

    Structural abnormality of the corticospinal tract in major depressive disorder

    Get PDF
    BACKGROUND: Scientists are beginning to document abnormalities in white matter connectivity in major depressive disorder (MDD). Recent developments in diffusion-weighted image analyses, including tractography clustering methods, may yield improved characterization of these white matter abnormalities in MDD. In this study, we acquired diffusion-weighted imaging data from MDD participants and matched healthy controls. We analyzed these data using two tractography clustering methods: automated fiber quantification (AFQ) and the maximum density path (MDP) procedure. We used AFQ to compare fractional anisotropy (FA; an index of water diffusion) in these two groups across major white matter tracts. Subsequently, we used the MDP procedure to compare FA differences in fiber paths related to the abnormalities in major fiber tracts that were identified using AFQ. RESULTS: FA was higher in the bilateral corticospinal tracts (CSTs) in MDD (p’s < 0.002). Secondary analyses using the MDP procedure detected primarily increases in FA in the CST-related fiber paths of the bilateral posterior limbs of the internal capsule, right superior corona radiata, and the left external capsule. CONCLUSIONS: This is the first study to implicate the CST and several related fiber pathways in MDD. These findings suggest important new hypotheses regarding the role of CST abnormalities in MDD, including in relation to explicating CST-related abnormalities to depressive symptoms and RDoC domains and constructs

    Observation of the Dynamic Beta Effect at CESR with CLEO

    Get PDF
    Using the silicon strip detector of the CLEO experiment operating at the Cornell Electron-positron Storage Ring (CESR), we have observed that the horizontal size of the luminous region decreases in the presence of the beam-beam interaction from what is expected without the beam-beam interaction. The dependence on the bunch current agrees with the prediction of the dynamic beta effect. This is the first direct observation of the effect.Comment: 9 page uuencoded postscript file, postscritp file also available through http://w4.lns.cornell.edu/public/CLNS, submitted to Phys. Rev.

    Further Search for the Two-Photon Production of the Glueball Candidate fJ(2220)f_{J}(2220)

    Get PDF
    The CLEOII detector at the Cornell e+ e- storage ring CESR has been used to search for the two-photon production of the fJ(2220)f_J(2220) decaying into pi+ pi-. No evidence for a signal is found in data corresponding to an integrated luminosity of 4.77/fb and a 95% CL upper limit on Γtwo−photon∗BRpi+pi−\Gamma_{two-photon} * BR{pi+ pi-} of 2.5 eV is set. If this result is combined with the BES Collaboration's measurement of fJ(2220)−>pi+pi−f_J(2220) -> pi+ pi- in radiative J/ψJ/\psi decay, a 95% CL lower limit on the stickiness of the fJ(2220)f_J(2220) of 73 is obtained. If the recent CLEO result for \Gamma_{two-photon} * BR{\K_S K_S} is combined with the present result, the stickiness of the fJ(2220)f_J(2220) is found to be larger than 102 at the 95% CL. These results for the stickiness (the ratio of the probabilities for two-gluon coupling and two-photon coupling) provide further support for a substantial neutral parton content in the fJ(2220)f_J(2220).Comment: 8 pages, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Argon behaviour in an inverted Barrovian sequence, Sikkim Himalaya: the consequences of temperature and timescale on <sup>40</sup>Ar/<sup>39</sup>Ar mica geochronology

    Get PDF
    40Ar/39Ar dating of metamorphic rocks sometimes yields complicated datasets which are difficult to interpret in terms of timescales of the metamorphic cycle. Single-grain fusion and step-heating data were obtained for rocks sampled through a major thrust-sense shear zone (the Main Central Thrust) and the associated inverted metamorphic zone in the Sikkim region of the eastern Himalaya. This transect provides a natural laboratory to explore factors influencing apparent 40Ar/39Ar ages in similar lithologies at a variety of metamorphic pressure and temperature (P–T) conditions. The 40Ar/39Ar dataset records progressively younger apparent age populations and a decrease in within-sample dispersion with increasing temperature through the sequence. The white mica populations span ~ 2–9 Ma within each sample in the structurally lower levels (garnet grade) but only ~ 0–3 Ma at structurally higher levels (kyanite-sillimanite grade). Mean white mica single-grain fusion population ages vary from 16.2 ± 3.9 Ma (2σ) to 13.2 ± 1.3 Ma (2σ) from lowest to highest levels. White mica step-heating data from the same samples yields plateau ages from 14.27 ± 0.13 Ma to 12.96 ± 0.05 Ma. Biotite yield older apparent age populations with mean single-grain fusion dates varying from 74.7 ± 11.8 Ma (2σ) at the lowest structural levels to 18.6 ± 4.7 Ma (2σ) at the highest structural levels; the step-heating plateaux are commonly disturbed. Temperatures > 600 °C at pressures of 0.4–0.8 GPa sustained over > 5 Ma, appear to be required for white mica and biotite ages to be consistent with diffusive, open-system cooling. At lower temperatures, and/or over shorter metamorphic timescales, more 40Ar is retained than results from simple diffusion models suggest. Diffusion modelling of Ar in white mica from the highest structural levels suggests that the high-temperature rocks cooled at a rate of ~ 50–80 °C Ma− 1, consistent with rapid thrusting, extrusion and exhumation along the Main Central Thrust during the mid-Miocene

    Observation of New States Decaying into Λc+π−π+\Lambda_{c}^{+}\pi^{-}\pi^{+}

    Full text link
    Using 13.7 fb^{-1} of data recorded by the CLEO detector at CESR, we investigate the spectrum of charmed baryons which decay into Lambda_c^+ pi^- pi^+ and are more massive than the Lambda_{c1} baryons. We find evidence for two new states: one is broad and has an invariant mass roughly 480 MeV above that of the Lambda_c^+; the other is narrow with an invariant mass of 596 +- 1 +- 2 MeV above the Lambda_c^+ mass. These results are preliminary.Comment: 11 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    Study of Charmless Hadronic B Meson Decays to Pseudoscalar-Vector Final States

    Full text link
    We report results of searches for charmless hadronic B meson decays to pseudoscalar(pi^+-,K^+-,Pi^0 or Ks^0)-vector(Rho, K* or Omega) final states. Using 9.7 million BBbar pairs collected with the CLEO detector, we report first observation of B^- --> Pi^-Rho^0, B^0 --> Pi^+-Rho^-+ and B^- --> Pi^-Omega, which are expected to be dominated by hadronic b --> u transitions. The measured branching fractions are (10.4+3.3-3.4+-2.1)x10^-6, (27.6+8.4-7.4+-4.2)x10^-6 and (11.3+3.3-2.9+-1.4)x10^-6, respectively. Branching fraction upper limits are set for all the other decay modes investigated.Comment: 10 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    A Search for Charmless B→VVB\to VV Decays

    Full text link
    We have studied two-body charmless decays of the BB meson into the final states ρ0ρ0\rho^0 \rho^0, K∗0ρ0K^{*0} \rho^0, K∗0K∗0K^{*0} K^{*0}, K∗0K∗0ˉK^{*0} \bar{K^{*0}}, K∗+ρ0K^{*+} \rho^0, K∗+K∗0ˉK^{*+} \bar{K^{*0}}, and K∗+K∗−K^{*+} K^{*-} using only decay modes with charged daughter particles. Using 9.7 million BBˉB \bar{B} pairs collected with the CLEO detector, we place 90% confidence level upper limits on the branching fractions, (0.46−7.0)×10−5(0.46-7.0)\times 10^{-5}, depending on final state and polarization.Comment: 8 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    Hadronic Structure in the Decay τ−→π−π0Μτ\tau^{-}\to \pi^{-}\pi^{0}\nu_{\tau}

    Full text link
    We report on a study of the invariant mass spectrum of the hadronic system in the decay tau- -> pi- pi0 nu_tau. This study was performed with data obtained with the CLEO II detector operating at the CESR e+ e- collider. We present fits to phenomenological models in which resonance parameters associated with the rho(770) and rho(1450) mesons are determined. The pi- pi0 spectral function inferred from the invariant mass spectrum is compared with data on e+ e- -> pi+ pi- as a test of the Conserved Vector Current theorem. We also discuss the implications of our data with regard to estimates of the hadronic contribution to the muon anomalous magnetic moment.Comment: 39 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN
    • 

    corecore