208 research outputs found

    Realistic shell-model calculations for proton particle-neutron hole nuclei around 132Sn

    Get PDF
    We have performed shell-model calculations for nuclei with proton particles and neutron holes around 132Sn using a realistic effective interaction derived from the CD-Bonn nucleon-nucleon potential. For the proton-neutron channel this is explicitly done in the particle-hole formalism. The calculated results are compared with the available experimental data, particular attention being focused on the proton particle-neutron hole multiplets. A very good agreement is obtained for all the four nuclei considered, 132Sb, 130Sb, 133Te and 131Sb. We predict many low-energy states which have no experimental counterpart. This may stimulate, and be helpful to, future experiments.Comment: 8 pages, 6 figures, to be published on Physical Review

    On the isospin dependence of the mean spin-orbit field in nuclei

    Get PDF
    By the use of the latest experimental data on the spectra of 133^{133}Sb and 131^{131}Sn and on the analysis of properties of other odd nuclei adjacent to doubly magic closed shells the isospin dependence of a mean spin-orbit potential is defined. Such a dependence received the explanation in the framework of different theoretical approaches.Comment: 52 pages, Revtex, no figure

    Low momentum nucleon-nucleon potential and shell model effective interactions

    Get PDF
    A low momentum nucleon-nucleon (NN) potential V-low-k is derived from meson exhange potentials by integrating out the model dependent high momentum modes of V_NN. The smooth and approximately unique V-low-k is used as input for shell model calculations instead of the usual Brueckner G matrix. Such an approach eliminates the nuclear mass dependence of the input interaction one finds in the G matrix approach, allowing the same input interaction to be used in different nuclear regions. Shell model calculations of 18O, 134Te and 135I using the same input V-low-k have been performed. For cut-off momentum Lambda in the vicinity of 2 fm-1, our calculated low-lying spectra for these nuclei are in good agreement with experiments, and are weakly dependent on Lambda.Comment: 5 pages, 5 figure

    Discovery of the Cadmium Isotopes

    Full text link
    Thirty-seven cadmium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.Comment: to be published in Atomic Data and Nuclear Data Table

    Quadrupole-deformed and octupole collective bands in 228^{228}Ra

    Get PDF
    Spins and parities for collective states in 228^{228}Ra have been determined from conversion electron measurements with a mini-orange β\beta-spectrometer. The fast-timing βγγ(t)\beta\gamma\gamma(t) method has been used to measure lifetimes of T1/2_{1/2}=550(20) ps and 181(3) ps for the 21+2^{+}_{1} and 41+4^{+}_{1} members of the K=0+^{+} band, and T1/2_{1/2} \leqslant 7 ps and \leqslant 6 ps for the 111^{-}_{1} and 313^{-}_1 members of the K = 00^{-} band, respectively The quadrupole moments, Q0Q_{0} deduced from the B (E2; 21+01+_{1}^{+} \rightarrow 0_{1}^{+}) and B (E2; 41+21+_{1}^{+} \rightarrow 2_1^{+}) rates are in good agreement with the previously measured value and the systematics of the region. However, the B(E1) rates of \geqslant 4 × 104^{−4} e2^{2}fm2^{2}, which represent the first B(E1) measurements for this nucleus, are at least 25 times larger than the value previously suggested for 228^{228}Ra. The new results are consistent with the B(E1) rates recently measured for the neighbouring 227^{227}Ra and reveal octupole correlations in 228^{228}Ra
    corecore