7 research outputs found

    Mammal responses to global changes in human activity vary by trophic group and landscape

    Get PDF
    Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human–wildlife interactions along gradients of human influence.Peer reviewe

    DataSheet_1_Bison and elk spatiotemporal interactions in Elk Island National Park.docx

    No full text
    Elk Island National Park (EINP) is a fenced park in the Beaver Hills UNESCO Biosphere Reserve of central Alberta where aspen parkland is being conserved. This area maintains high densities of native ungulates including elk (Cervus elaphus), bison (Bison bison bison, B. bison athabascae), moose (Alces alces), white-tailed deer (Odocoileus virginianus), and mule deer (O. hemionus). Our objective was to evaluate spatiotemporal overlap and interspecific interactions between bison and elk in EINP using camera traps. Bison and elk have overlapping habitat use and diet and are the primary focus of ungulate management in EINP. We examined distributions of both species in relation to season, landscape characteristics, anthropogenic features, and heterospecifics using generalized linear models (GLMs). We then examined seasonal daily activity patterns of bison and elk and calculated the degree of overlap. The spatial analysis revealed that bison counts were positively associated with higher proportions of open habitats across seasons and in areas farther from water in summer and fall but had no associations with distance to water during winter. Bison removal year (years during which bison removals were conducted by Parks Canada) was a significant predictor variable for bison counts in winter when the bison roundup takes place. Elk avoided areas with high linear feature density across seasons. During fall and winter, we observed higher elk counts associated with bison presence. Temporal activity patterns revealed that elk were crepuscular in all three seasons, but bison activity patterns varied with diurnal activity being more common in the summer, crepuscular activity in winter, and intermediate activity patterns during fall. Coefficients of overlap between elk and bison were high in all three seasons with the greatest difference in daily activity patterns in summer and the highest overlap in winter when both species showed strong crepuscular activity. Despite the fenced perimeter in EINP resulting in high ungulate densities, limited dispersal, and low predation, our data show patterns of habitat use and interactions between bison and elk that were similar to those in other systems. Spatiotemporal partitioning does not appear necessary for coexistence of bison and elk in the aspen parkland.</p

    Identification of gene expression changes induced by chemical allergens in dendritic cells: Opportunities for skin sensitization testing

    Get PDF
    Cellular changes within resident skin dendritic cells (DCs) after allergen uptake and processing are critical events in the acquisition of skin sensitization. Here we describe the development of a set of selection criteria to derive a list of potential target genes from previous microarray analyses of human peripheral blood-derived (peripheral blood mononuclear cells (PBMCs)-DCs) treated with dinitrobenzene sulfonic acid for predicting skin-sensitizing chemicals. Based on those criteria, a probing evaluation of the target genes has been conducted using an extended chemical data set, comprising five skin irritants and 11 contact allergens. PBMCs-DCs were treated for 24hours with various concentrations of chemicals and in each instance the expression of up to 60 genes was examined by real-time PCR analysis. Consistent allergen-induced changes in the expression of many genes were observed and further prioritization of the targets was conducted by analysis of the same genes in DCs treated with non-sensitizing chemicals to determine their specificity for skin sensitization. Real-time PCR analyses of multiple chemical allergens, irritants, and non-sensitizers have identified 10 genes that demonstrate reproducibly high levels of selectivity, specificity, and dynamic range consistent with providing the basis for robust and sensitive alternative approaches for the identification of skin-sensitizing chemicals
    corecore