2,099 research outputs found

    Nonsteady-Flow Thrust Augmenting Ejectors

    Get PDF
    Ejector augmenters in which the transfer of mechanical energy from the primary to the secondary flow takes place through the work of interface pressure forces are investigated. Nonsteady flow processes are analyzed from the standpoint of energy transfer efficiency and a comparison of a rotary jet augmenter to an ejector is presented

    Floquet topological transitions in a driven one-dimensional topological insulator

    Get PDF
    The Su-Schrieffer-Heeger model of polyacetylene is a paradigmatic Hamiltonian exhibiting non-trivial edge states. By using Floquet theory we study how the spectrum of this one-dimensional topological insulator is affected by a time-dependent potential. In particular, we evidence the competition among different photon-assisted processes and the native topology of the unperturbed Hamiltonian to settle the resulting topology at different driving frequencies. While some regions of the quasienergy spectrum develop new gaps hosting Floquet edge states, the native gap can be dramatically reduced and the original edge states may be destroyed or replaced by new Floquet edge states. Our study is complemented by an analysis of Zak phase applied to the Floquet bands. Besides serving as a simple example for understanding the physics of driven topological phases, our results could find a promising test-ground in cold matter experiments

    Crafting zero-bias one-way transport of charge and spin

    Full text link
    We explore the electronic structure and transport properties of a metal on top of a (weakly coupled) two-dimensional topological insulator. Unlike the widely studied junctions between topological non-trivial materials, the systems studied here allow for a unique bandstructure and transport steering. First, states on the topological insulator layer may coexist with the gapless bulk and, second, the edge states on one edge can be selectively switched-off, thereby leading to nearly perfect directional transport of charge and spin even in the zero bias limit. We illustrate these phenomena for Bernal stacked bilayer graphene with Haldane or intrinsic spin-orbit terms and a perpendicular bias voltage. This opens a path for realizing directed transport in materials such as van der Waals heterostructures, monolayer and ultrathin topological insulators.Comment: 7 pages, 7 figure

    Inelastic Quantum Transport and Peierls-like Mechanism in Carbon Nanotubes

    Full text link
    We report on a theoretical study of inelastic quantum transport in (3m,0)(3m,0) carbon nanotubes. By using a many-body description of the electron-phonon interaction in Fock space, a novel mechanism involving optical phonon emission (absorption) is shown to induce an unprecedented energy gap opening at half the phonon energy, ℏω0/2\hbar\omega_{0}/2, above (below) the charge neutrality point. This mechanism, which is prevented by Pauli blocking at low bias voltages, is activated at bias voltages in the order of ℏω0\hbar\omega_{0}.Comment: 4 pages, 4 figure

    Non-Hermitian robust edge states in one-dimension: Anomalous localization and eigenspace condensation at exceptional points

    Full text link
    Capital to topological insulators, the bulk-boundary correspondence ties a topological invariant computed from the bulk (extended) states with those at the boundary, which are hence robust to disorder. Here we put forward an ordering unique to non-Hermitian lattices, whereby a pristine system becomes devoid of extended states, a property which turns out to be robust to disorder. This is enabled by a peculiar type of non-Hermitian degeneracy where a macroscopic fraction of the states coalesce at a single point with geometrical multiplicity of 11, that we call a phenomenal point.Comment: 6 pages, 4 figure

    Mono-parametric quantum charge pumping: interplay between spatial interference and photon-assisted tunneling

    Full text link
    We analyze quantum charge pumping in an open ring with a dot embedded in one of its arms. We show that cyclic driving of the dot levels by a \textit{single} parameter leads to a pumped current when a static magnetic flux is simultaneously applied to the ring. Based on the computation of the Floquet-Green's functions, we show that for low driving frequencies ω0\omega_0, the interplay between the spatial interference through the ring plus photon-assisted tunneling gives an average direct current (dc) which is proportional to ω02\omega_0^{2}. The direction of the pumped current can be reversed by changing the applied magnetic field.Comment: 7 pages, 4 figures. To appear in Phys. Rev.

    Directional photoelectric current across the bilayer graphene junction

    Full text link
    A directional photon-assisted resonant chiral tunneling through a bilayer graphene barrier is considered. An external electromagnetic field applied to the barrier switches the transparency TT in the longitudinal direction from its steady state value T=0 to the ideal T=1 at no energy costs. The switch happens because the a.c. field affects the phase correlation between the electrons and holes inside the graphene barrier changing the whole angular dependence of the chiral tunneling (directional photoelectric effect). The suggested phenomena can be implemented in relevant experiments and in various sub-millimeter and far-infrared optical electronic devices.Comment: 7 pages 5 figure

    Topological states of non-Hermitian systems

    Full text link
    Recently, the search for topological states of matter has turned to non-Hermitian systems, which exhibit a rich variety of unique properties without Hermitian counterparts. Lattices modeled through non-Hermitian Hamiltonians appear in the context of photonic systems, where one needs to account for gain and loss, circuits of resonators, and also when modeling the lifetime due to interactions in condensed matter systems. Here we provide a brief overview of this rapidly growing subject, the search for topological states and a bulk-boundary correspondence in non-Hermitian systems.Comment: Invited short review for the special issue "Topological States of Matter: Theory and Applications

    First-line therapy for post-traumatic stress disorder : a systematic review of cognitive behavioural therapy and psychodynamic approaches

    Get PDF
    Background: Despite evidence supporting cognitive behavioural therapy (CBT) based interventions as the most effective approach for treating posttraumatic stress disorder (PTSD) in randomised control trials, alternative treatment interventions are often used in clinical practice. Psychodynamic (PDT) based interventions are one example of such preferred approaches, this is despite comparatively limited available evidence supporting their effectiveness for treating PTSD. Aims: Existing research exploring effective therapeutic interventions for PTSD includes trauma-focused CBT involving exposure techniques. The present review sought to establish the treatment efficacy of CBT and PDT approaches, and considers the potential impact of selecting PDT-based techniques over CBT-based techniques for the treatment of PTSD.Results: The evidence reviewed provided examples supporting PDT-based therapy as an effective treatment for PTSD, but confirmed CBT as more effective in the treatment of this particular disorder. Comparable dropout rates were reported for both treatment approaches, suggesting that relative dropout rate should not be a pivotal factor in the selection of a PDT approach over CBT for treatment of PTSD.Conclusion/Implications: The need to routinely observe evidence-based recommendations for effective treatment of PTSD is highlighted and factors undermining practitioner engagement with CBT-based interventions for the treatment of PTSD are identified
    • …
    corecore