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The Su-Schrieffer—Heeger model of polyacetylene is a paradigmatic Hamiltonian exhibiting nontrivial edge
states. By using Floquet theory we study how the spectrum of this one-dimensional topological insulator is
affected by a time-dependent potential. In particular, we provide evidence of the competition among different
photon-assisted processes and the native topology of the unperturbed Hamiltonian to settle the resulting topology
at different driving frequencies. While some regions of the quasienergy spectrum develop new gaps hosting
Floquet edge states, the native gap can be dramatically reduced and the original edge states may be destroyed or

replaced by new Floquet edge states. Our study is complemented by an analysis of the Zak phase applied to the
Floquet bands. Besides serving as a simple example for understanding the physics of driven topological phases,
our results could find a promising testing ground in cold-matter experiments.
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I. INTRODUCTION

Since the discovery of the integer quantum Hall effect [1],
the physics of topological states has established itself as a
privileged crossroads for diverse communities. A quarter of a
century later, the discovery of topological insulators [2] has
propelled the interest in this area [3,4]. This time, rather than
high magnetic fields, the key ingredient was the spin-orbit
coupling which is naturally strong in compounds made of
heavy elements. Recent studies hint that there might be a third
alternative enabling nontrivial topology: shining a laser on a
sample [5-8] to generate Floguet topological states [7,9—13].
The sample could be either graphene [5,6,8,14], a trivial
insulator [7], a superconductor [15], a three-dimensional Dirac
semimetal [16], or a topological insulator [17]. The opening of
laser-induced band gaps has already been observed [18] and
new experiments [19-21] and theories are being developed
to unveil the states’ fingerprint of their topology [8,22-25],
e.g., the bulk boundary correspondence [26-28], their dynam-
ics [29,30], occupation [31,32], transport properties [33-36],
and the connection between the Hall response and the edge
states [37]. More generally, there is a surge of interest in the
physics of topological properties far from equilibrium [30,38].

At the time of the birth of the integer quantum Hall
effect [1,39] another important finding was the discovery of
conducting polymers [40,41]. Later on, it became clear that
the simple tight-binding model proposed by Su, Schrieffer,
and Heeger [40] in 1979 to describe the dimerization in
polyacetylene (today named the SSH model) is, indeed, a
minimal example of a one-dimensional topological insulator
(see, for example, Refs. [42,43]). The topologically trivial or
nontrivial character of the dimerized chain is controlled by
the relative strength of the intracell-to-intercell couplings: A
tight-binding chain with hoppings bearing alternating values
y; and y, [y being the intracell hopping as represented in
Fig. 1(a)] sustains one topological state localized at each
termination if |y;/y2| < 1, and zero otherwise [as shown in
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Figs. 1(c) and 1(b)]. The existence of such states, in turn, is
related to a topological invariant called the Zak phase.

Here we inquire about the effect of a time-dependent per-
turbation on the SSH model, thereby providing a minimal case
of a driven topological insulator. The driving considered here
consists of a modulation of the hoppings with spatial period d
[the same as for the SSH model; see scheme in Fig. 1(d)]. In
particular, a relevant question is how driving affects the native
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FIG. 1. (Color online) (a) Scheme representing a finite section of
the Su-Schrieffer—Heeger model with N unit cells and where y; and
y, are the intra- and intercell hoppings, respectively. While the bulk
spectrum is independent of the ratio |y; /y| [shown in panels (b) and
(c) in gray for § = 0 and as a black line for § # 0], the spectrum of
a finite chain [shown in blue dots in panels (b) and (c)] differs in the
absence [panel (b), |y1/y2] > 1] or presence [panel (c), |y1/y2| < 1]
of midgap states. (d) Scheme of the driven SSH model considered in
the text.
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topology. For example, if starting from the undimerized chain
one adds a time-dependent modulation of the hoppings, then,
as the instantaneous ratio |y;/y»| changes, snapshots taken at
different times would correspond to configurations consistent
with a switching from a topologically trivial insulator to
a nontrivial one, back and forth. Although previous works
have addressed driven one-dimensional systems in a variety
of contexts [11,24,31,44], the above question still remains.
In particular, Ref. [44] focuses on the general problems of
topological invariants in one-dimensional driven systems and
treats the case of a SSH model modulated by a train of pulses
that realize a discrete-time quantum walk. Our approach, based
on an energy-domain solution, is complementary to that of
Ref. [44]; our focus being to clarify the ensuing topological
transitions.

By using Floquet theory we show that driving can induce
new gaps depending critically on the driving frequency or
strength and change dramatically the gaps of the undriven
model. Interestingly, the newly formed gaps may host Floquet
edge states while those at the pre-existent gaps can be
annihilated by the driving. The topological transitions leading
to such changes are studied in detail, complementing our
numerical study with a calculation of the relevant topological
invariant, i.e., the Zak phase [45]. Our results reveal a subtle
competition between the different available photon-assisted
processes and the native topology of the model to set the
final character of each gap. We show that, as the frequency is
lowered, each time new inelastic processes come to play one
has that either the pre-existent edge states are destroyed, if
they already exist, or new ones are created, if they were not
present before. These Floquet topological transitions could be
tested in cold matter where there is much interest in driven
topological phases from the theoretical point of view [46—48]
and where recent experimental progress has allowed the
realization of the SSH model [49], the Haldane model [20],
the Hofstadter model [50], and even the measurement of the
relevant topological invariants [49,50].

II. FLOQUET APPROACH AND OPENING OF BANDGAPS
IN QUASIENERGY SPECTRUM

A. Floquet theory applied to driven SSH model

The Su—Schrieffer—Heeger (SSH) model [40] describes the
dimerization that occurs in a one-dimensional periodic system
subject to a cell-doubling perturbation in the spirit of the
Peierls transition [51,52] and within a one-particle picture.
Here we consider a variant of the SSH model where the
hoppings are modulated in time so that nearby bonds have
opposite phases:

f t
H=- Z(VICA,/'CB.]' +vocp j_1ca,; +He)
J

+ Z(v(t)c;jc&j — v(t)c;j_ch'j + H.c)),
J

where cl - and c,, ; are the creation and annihilation operators

at site o (which can be either A or B type) of the jth unit
cell, y1 =y + 6 and y» = yy — 8, & being the dimerization
strength and v(t) = 2V, cos(€2t) with V,. being the driving
amplitude. The onsite energies E, ; may all be taken equal
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to a reference energy (zero energy), )y is taken as the unit of
energy and the lattice constant for the dimerized phase is d
[as represented in Fig. 1(a)]. We note that this Hamiltonian
is different from the one discussed in Ref. [11], where the
perturbation corresponds to a time-dependent electric field
introduced through a vector potential modifying the k vector
via minimal coupling.

The first term on the right-hand side (rhs) of Eq. (1)
corresponds to the usual SSH model and the second term
accounts for the driving. In the bulk limit, the static part of the
Hamiltonian can also be written as H;, = hy - o, where Hy is a
2 x 2 matrix written in the basis of A and B sites, o is the vector
of Pauli matrices (oy,0y,0;), and hy is a vector with vanishing
z component since A and B have the same local energy.
The latter assures that chiral symmetry is preserved [53]: if
+e¢ is an eigenvalue then its opposite —e is one too (the
spectrum is therefore symmetric). Imposing this symmetry
ensures the existence of two distinct topological phases (§ > 0
and § < 0) for the static system. One can verify that the driving
term satisfies a generalized chiral symmetry and the Floquet
spectrum is symmetric with respectto e = mhS2/2 (m integer).

The properties of interest in our work can be obtained
by using Floquet theory which is particularly tailored for
time-periodic Hamiltonians [54,55]. Given a time-periodic
Hamiltonian with period 7', there is a complete set of Floquet
solutions of the form v, (r,t) = exp(—ieyt/h)p,(r,t), where
&y are the so-called quasienergies and ¢, (r,t + T) = ¢ (r,1)
are the associated Floquet states. By inserting these solutions
into the time-dependent Schrodinger equation, one gets that
the Floquet states satisfy an equation analogous to the time-
independent Schrodinger equation with the Hamiltonian being
replaced by the Floquet Hamiltonian Hr=H-— ihaa—[. Thus,
one has an eigenvalue problem in the direct-product Floquet
space [56]: Z ® 7, % being the usual Hilbert space and 7
being the space of periodic functions with period T = 27/ Q2
which is spanned by the functions exp(in€2t). The index n can
be assimilated to the number of “photon” excitations [57] and
defines a subspace also called nth Floquet replica. Note that,
in this energy-domain solution, we do not need to resort to the
consideration of the time-evolution operator.

In our calculations we used different codes, including a code
built on KWANT [58] and a home-made implementation using
recursive Green’s functions allowing us to deal with a semi-
infinite system. The numerical calculation of the Zak phase
was carried out by using the Python tight-binding package
(PythTB) [59].

B. Driving-induced gaps in bulk spectrum

Let us focus first on the quasienergy spectrum of the
bulk system. Figures 2(a) and 2(b) show the spectrum of the
undriven system without (§ = 0) and with (§ # 0) the cell-
doubling perturbation, respectively. While the former does not
have a gap, the latter does have one at zero energy of magnitude
Ao = 41/8]. The color scale represents the weight on different
replicas, from blue for unit weight on the n = O replica to gray.
This weight can be interpreted as the contribution of each state
of energy ¢ to the time-averaged density of states at the same
energy [5].
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FIG. 2. (Color online) Quasienergy spectra for the (bulk) Su-
Schrieffer-Heeger model obtained for different sets of values of the
dimerization constant § and the driving amplitude V,.. In the available
range we can distinguish the Floquet replicas with n = —1,0,1, and
the color bar indicates the contribution to the time-averaged density of
states. Starting from the undriven model (a) and (b), and considering
the process related to the n = O replica, we can see how the model
develops gaps at £h$2/2 in panels (c) and (d), and also at +hQ2
in panel (f). In these plots A2 = 2.8y, for panels (c) and (d) and
A2 = 1.3y, for panels (e) and (f); § = 0.3y, in panels (b), (d), and
(f); and V,. = 0.1y in panels (c)—(f).

The most relevant effects of driving take place at the points
where the spectrum becomes degenerate. For simplicity, we
focus only on the energy range spanned by the n = 0 replica.
In that case, the degenerate points at the frequency plotted in
Figs. 2(a)-2(d) are located at either ¢ = 0 or & &= h€2/2.

Once the time-dependent perturbation is switched on [as
in Figs. 2(c) and 2(d)], the degeneracies at +2<2/2 (involving
states withn = Qandn = +£1) are lifted leading to the driving-
induced band gaps. Similar gaps were previously found in the
context of carbon nanotubes affected by the interaction with a
single optical phonon mode [60,61], which gives a quantized
version of our model.

What is the origin of such gaps in this one-dimensional
system? In contrast to the driving-induced gaps in graphene
illuminated with a circularly polarized laser [5,62], where
opening a gap among the n = 0 and n = %1 replicas requires
breaking time-reversal symmetry (TRS), the gap-opening
mechanism in the driven SSH model relies on the spatial peri-
odicity of the time-dependent perturbation (no TRS breaking
is necessary). Indeed, the time-dependent perturbation must
have a component with a spatial period d to mix different
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Floquet replicas, so that the degeneracies between states at
+h<2/2 are lifted, as shown in Figs. 2(c) and 2(d). The gap
has a magnitude of A; =~ 4|V,.|. Since this process involves
the Floquet replicas with n = 0 and n = +1, energy exchange
(photon emission and/or absorption) is crucial for these gaps
to occur, thereby highlighting their nonadiabatic nature.

When the frequency is low enough so that more replicas
overlap with each other, one can notice how higher-order
effects develop (new degeneracies appear within the spectral
support of the n = 0 replica). This is the case in Figs. 2(e)
and 2(f) where hQ2 = 1.1yy. The gaps at £hA€2/2 are almost
unnoticeable in this case and there are new driving-induced
gaps ate = +hQ2 which appear only when 8 # 0 [see Figs. 2(e)
and 2(f)] and correspond to the mixing of the n =0 and
n = %2 replicas. The processes leading to those gaps are more
subtle and involve virtual transitions through intermediate
states. The magnitude of the gap, which we denote with A,, can
be worked out analytically. One gets A, >~ [A}/(2h2)]*>Ag;
hence, the gap is proportional to V.2 Ag. The gap at zero energy
[which is reduced as compared with Figs. 2(c) and 2(d)] is also
determined now by A,.

III. FLOQUET EDGE STATES, TOPOLOGICAL
TRANSITIONS, AND ZAK PHASE

The analysis of the previous section gives a first hint on
the spectrum of the driven SSH model but does not reveal
its most interesting face: Are the Floquet gaps topological?
Do we have Floquet topological edge states? How does this
depend on the topology of the undriven model? To answer these
questions we analyze the Floquet spectrum of a semi-infinite
system in a wide range of frequencies chosen to match the
experimentally relevant regime in cold-matter experiments.
Due to the existence of an edge one can infer on the topology
from the eventual presence of edge states (a result which we
will later on confirm based on the Zak phase). The results are
shown in Figs. 3(a) for |y;/y»2| > 1 and 3(b) for |y1/y2| < 1.
At each frequency, the Floquet spectrum is plotted on the
vertical scale. For easier interpretation a (blue) color scale
corresponding to the weight of the states on the n = 0 Floquet
subspace is used (thus, it gives the time-averaged density of
states for that electronic energy). On the other hand, edge states
are plotted in red, irrespective of their weight on a particular
replica, this way one can spot them in the full range without
zooming in on the plot. By following the midgap states with the
driving frequency, Fig. 3 resembles the fan diagrams widely
used for Landau levels as a function of the magnetic field.

In the following we discuss first the set of relevant
frequencies where the topology may change (the transition
points). We then analyze these transitions by looking at the
presence of edge states and the Zak phase. As we will see
below, whenever a new pair of replicas starts to contribute
at a given midgap energy, the Zak phase acquires a 7 shift,
therefore destroying the pre-existent edge states or creating
new ones.

A. High- and low-frequency regimes and transition points

Figure 3 shows how the gaps at ¢ = 0, + h2/2 evolve with
frequency. It also reveals two very distinct regimes: high and
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FIG. 3. (Color online) Floquet spectrum [(a) and (b)] and Zak phases [(c)—(f)] as a function of the driving frequency €2 from 0.8y, to 4.4y.
The calculations correspond to V,. = 0.1y and § = 4-0.3y, [panels (a), (c), and (e)] and § = —0.3y, [panels (b), (d), and (f)]. The color scale
from gray to blue in panels (a) and (b) indicates the weight of the corresponding bulk state on the n = 0 Floquet subspace (white indicates the
absence of states, i.e., the existence of a gap in the bulk spectrum). The midgap states are all shown in red, irrespective of their weight on a
particular Floquet replica. These edge states are localized at the end of the system. The modulus squared of the the eigenvector components
as a function of position for two of such edge states marked with a diamond in panel (a) and an up triangle in panel (b) are shown in the
corresponding insets (scatters). The inset to panel (a) shows the modulus squared on the n = +1 replica, which is the same as the one on
n = —1, while the inset to panel (b) shows the weight on the n = 0 replica (which is numerically equal to that on the n = +1 replica). They
follow an exponential decay (gray lines) with a decay length inversely proportional to the corresponding gap. Panels (c) and (d) [(e) and ()]
show the Zak phase for the sates filled up to ¢ = 0 (¢ = h€2/2). Up to 13 replicas are used for the calculations in the range shown in the figures.

low frequency. For simplicity let us imagine that the driving is
turned off while keeping the Floquet picture. Then one has the
original energy bands and the replicas, which are displaced
by nh€2, as in Fig. 2(b). The high-frequency regime occurs
when different Floquet replicas do not overlap at the energy
of interest. This is satisfied if the frequency is so large that
the replicas are well separated. If we are interested in what
happens, say, close to ¢ =0, as long as A2 > 2|yy| one is
in the high-frequency regime. On the other hand, close to
& = £h82/2, the high-frequency regime takes place for 22 >
4|yp| and the gaps at £hA€2/2 do not form. As the frequency
is lowered, the replicas overlap enough with each other so
that two or more of them have states close to the energy we
are interested in and we get into the low-frequency regime.
Whenever a new set of replicas enter into the game (or leave
it) defines a potential transition point, where the topology of
the band structure may change. Similar contrasting low- and
high-frequency regimes were observed in Ref. [11] close to
zero energy for a different time-dependent perturbation.

When lowering the frequency, whenever new bands acquire
spectral weight at ¢ = 0 they do it in pairs (because of the
electron-hole symmetry of the Hamiltonian). The first of such
events occurs at hS2 = 2|yy| and subsequent ones follow the
rule hQ2 = 2|y|/m, m = 1,2, .... Analogously, the pairs of
replicas cease to have spectral weight at frequencies given
by A2 = 2|8|/m. A similar behavior is found when looking
at e = £hQ2/2, in this case when lowering the frequency new
bands acquire spectral weight whenever A2 = 4|yy|/(2m — 1)
and gets out at 12 = 4|5|/(2m — 1). For example, in the range
shown in Fig. 3, this occurs withthen = Oandn = 1replicas at
frequencies 4|yy| and 48|, respectively. These four equations
define the transition points.

In the next paragraphs we aim to describe the topological
transitions at those transition points. But before that, let us
examine when the spectrum remains gapped and when it does
not. This is, of course, unless all the Floquet replicas present
at the energy of interest are simultaneously gapped. This
may occur only at precise energies where the global Floquet
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spectrum is symmetric, in our case ¢ = mh$2/2 with m an
integer. In particular, at ¢ = 0 in the range |yy| < A2 < 2|y|
(this is between the first and the second transition points), the
zero-energy gap of the n = O replica matches the weaker gap at
h$2 above (below) the center of the n = —1 (n = +1) replica
(with magnitude A,). Thus, the gap is preserved but its width
is now set by the smaller one, A, [as shown in Fig. 2(f)]. As
the frequency is lowered further and new transition points are
traversed, the gap acquires a progressively higher order in V¢
and therefore decreases to the level where it can be hardly
noticed. A similar analysis holds for the gaps at +7A2/2.

B. Topological transitions in Floquet spectra

The topology of the undriven system is controlled by the
ratio |y;/y»|, being trivial when |y;/y»2| > 1 and nontrivial
when |y;/y2| < 1. Figures 3(a) and 3(b) show the driven
systems in both situations. We checked that all the midgap
states correspond to edge states, which are indeed absent in a
bulk calculation. Two such states are presented in the insets
of Fig. 3(a) and 3(b), showing an exponential decay with an
exponent determined by half the corresponding gap width. As
expected, in the high-frequency regime, the topology of the
driven system corresponds to that of the undriven one. This
can be inferred from the gaps and the absence or presence of
midgap states: Fig. 3(a) does not have midgap states at zero en-
ergy while 3(b) does. In the low-frequency regime, there may
also be midgap states appearing at £m#h$2/2. For odd m, they
turn out to be insensitive to the native topology of the undriven
model. In contrast, for even m those gaps appear only when § #
0 and their topology depends on that of the undriven model.

Let us analyze in more detail the midgap states. As
mentioned before, at ¢ = 0 and high frequency (72 > 2|yy)),
they follow the same prescription as in the undriven SSH
model. At A2 = 2|y, the replicas with n = £1 acquire a
finite spectral weight at that energy so that the gap closes
and a smaller gap reopens for A2 — 2|yp|~ (the width
being this time A;). By examining the midgap states we
see a topological change when traversing the transition point
at hQ2 = 2|yp|. Indeed, the topological trivial phase of the
SSH model (]y;/y2| > 1) becomes nontrivial and vice versa.
Therefore, in the latter case driving annihilates the topological
edge states present in the undriven system while in the former it
creates new edge states localized on the replicas withn = +1.

AthQ < |yl, Floquetreplicas withn = £2 come into play,
reducing the gap width and changing the topology once again.
That is, the Floquet edge states are now absent if |y /y»| > 1
or they re-emerge if |y; /2| < 1 (one observes one edge state
on each edge, two edge states in total). In the latter case, the
nature of the new states is different from the native ones as they
have a weight which is predominantly on the n = %2 replicas.

If we now look at the midgap states at & = +h2/2, one
observes that they share the same topology, irrespective of
the one of the undriven system [i.e., both Figs. 3(a) and 3(b)
are equivalent in these gaps]. Starting from high frequencies,
when 7$2 becomes smaller than 4|y|, the gaps at +h€2/2
open up hosting midgap edge states. This is preserved until the
next transition point located at hQ2 = 4|yy|/3 when topology
changes due to the mixing of Floquet replicas with n = 2 and
n = —1. The process is reversed at the following transition
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point located at 72 = 4§ = 1.2y, in Figs. 3(a) and 3(b) (where
the replicas withn = 1 andn = 0 cease to have spectral weight
ate = +hQ/2).

In contrast to the topological transitions predicted in the
literature for illuminated graphene [33,63,64] (the reader may
find detailed maps in Ref. [64]), here we have a case where the
system bears native topological states (which we show that can
be destroyed or even be replaced by new ones) and where the
number of possible edge states are restricted to a binary value.

How different are the new edge states as compared with
those in the undriven model? For the undriven model a simple
and elegant argument can describe all the topological phases
providing a flavor on the nature of the edge states. Indeed,
by considering the fully dimerized limit (when one of the
hoppings is zero) one immediately gets all the possible distinct
phases: If y, = 0 then there are no edge states, whereas if y; =
0 one has one edge state at each end of the chain, fully localized
on opposite sublattices. In the driven case this simple argument
describes the high-frequency regime but fails to accommodate
for midgap states at zero energy when A2 < 2y or those at
+h2/2. The finite bandwidth is crucial for the new driven
phases to occur since they arise because of its interplay with
the photon energy (allowing or restricting inelastic processes).
As shown in the insets of Fig. 3, the new edge states have a
nonvanishing weight on more than one Floquet replica.

C. Zak phase for driven SSH model

To further confirm the topological nature of these states, we
resort to the calculation of topological invariants. The relevant
invariant in our case is the Zak phase [45] Z defined as

Z= ifdkwuakuk), (1)

where |u;) are the cell-periodic Bloch states. The Zak phase
is essentially the geometric phase acquired after an adiabatic
loop in the Brillouin zone. This phase has been connected to
the existence of edge states in graphene [65] and, interestingly,
it has been measured in cold-matter systems simulating the
(undriven) SSH model [49] and also in acoustic systems [66].

Differences between Zak phases for topologically nontriv-
ial systems in one dimension are quantized in units of 7 even
though the value by itself depends on the choice of the unit
cell [49]. The sum of the Zak phases for all the bands with
energy below a given gap indicates the existence (with the
relevant cumulative phase being m) or absence (vanishing
cumulative phase) of topological midgap states.

To compute the Zak phase for the Floquet quasienergy
spectrum one needs to truncate the Floquet space. The number
of replicas needs to be chosen so that all relevant transitions
at the desired energy are kept. For example, for 7Q2 = 2.8y,
the analytic calculation of the phases Z, for each of the bands
marked with letters A—F in Fig. 2(d) (considering just those
three replicas) gives

_J0@=AF) .
o= {7[ (e =B,C,D,E) ° vi/val > 1, )
_|7m@=AF) '
= {O(a = B,C,D,E) °’ /vl < 1. 3)
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One verifies that the sum of the Zak phases do correspond with
the edge states found in the simulation of Figs. 3(a) and 3(b).
We have also verified this by numerical calculation in the
whole frequency range shown in Fig. 3. This is shown in
Figs. 3(c)-3(f), where Figs. 3(c) and 3(d) show the results for
the cumulative phase up to ¢ = 0, while Figs. 3(e) and 3(f) are
for e = h2/2, for the trivial and nontrivial undriven system,
respectively.

Considering both the results of the Floquet spectrum and
of the Zak phase, and assuming that the bulk boundary
correspondence holds at all frequencies, the behavior of the
driven system both at zero energy and at £A£2/2 can be put in
a nutshell with a simple argument: When lowering the driving
[frequency, every pair of new replicas entering into the game at
a given energy adds a 7 to the cumulative Zak phase, thereby
switching the topology from trivial to nontrivial and vice versa.

IV. FINAL REMARKS

In summary, we analyze the influence of driving on
a one-dimensional topological insulator given by the SSH
model. Our analysis reveals the creation of driving-induced
band gaps at £mh$2/2 (m integer) and their evolution. More
interestingly, we show that the topology of these bands turns
out to exhibit transitions as the driving frequency changes.
Both the native gap and the gaps at ¢ = +hQ2/2 switch
topology from nontrivial to trivial and vice versa. We attribute
these topological transitions to the competition between the
native topology and the one due to the driving and also among
different photon-assisted processes themselves. Our numerical

PHYSICAL REVIEW A 92, 023624 (2015)

results are supported by an analysis based on the Zak phase
for the Floquet bands.

The simple model studied here may find a realization in
ultracold matter, where the current state of the art allows
for manipulations beyond the reach of condensed matter.
Previously, the realization of the undriven SSH model in a cold-
atom setup permitting the direct measurement of the Zak phase
has been demonstrated [49]. There, the additional driving term
could be introduced by modulating the lasers used to produce
the dimerized potential, and the topology of the bands could
be characterized by measuring the Zak phase. Furthermore,
with the help of the newly developed high-resolution detection
and manipulation techniques [67,68], one could detect the
presence of edge states in finite-size systems. Among all the
transitions shown in this manuscript, the detection of those
occurring at higher frequencies, such as hQ2 = 4y, (opening
of the gap at £/ /2 containing topological midgap Floquet
edge states) and eventually also of the transition at hQ2 = 2y
(annihilation of the native topological states at zero energy),
look particularly promising.
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