94 research outputs found

    Recent Transits of the Super-Earth Exoplanet GJ 1214b

    Full text link
    We report recent ground-based photometry of the transiting super-Earth exoplanet GJ1214b at several wavelengths, including the infrared near 1.25 microns (J-band). We observed a J-band transit with the FLAMINGOS infrared imager and the 2.1-meter telescope on Kitt Peak, and we observed several optical transits using a 0.5-meter telescope on Kitt Peak and the 0.36-meter Universidad de Monterrey Observatory telescope. Our high-precision J-band observations exploit the brightness of the M-dwarf host star at this infrared wavelength as compared to the optical, as well as being significantly less affected by stellar activity and limb darkening. We fit the J-band transit to obtain an independent determination of the planetary and stellar radii. Our radius for the planet (2.61^+0.30_-0.11 Earth radii) is in excellent agreement with the discovery value reported by Charbonneau et al. based on optical data. We demonstrate that the planetary radius is insensitive to degeneracies in the fitting process. We use all of our observations to improve the transit ephemeris, finding P=1.5804043 +/- 0.0000005 days, and T0=2454964.94390 +/- 0.00006 BJD.Comment: Accepted for ApJ Letters, 7 pages, 3 Figures, 2 Table

    Recent Transits of the Super-Earth Exoplanet GJ 1214B

    Get PDF
    We report recent ground-based photometry of the transiting super-Earth exoplanet GJ1214b at several wavelengths, including the infrared near 1.25 microns (J-band). We observed a J-band transit with the FLAMINGOS infrared imager and the 2.1-meter telescope on Kitt Peak, and we observed several optical transits using a 0.5-meter telescope on Kitt Peak and the 0.36-meter Universidad de Monterrey Observatory telescope. Our high-precision J-band observations exploit the brightness of the M-dwarf host star at this infrared wavelength as compared to the optical, as well as being significantly less affected by stellar activity and limb darkening. We fit the J-band transit to obtain an independent determination of the planetary and stellar radii. Our radius for the planet (2.61 +0.30 / -0.11 Earth radii) is in excellent agreement with the discovery value reported by Charbonneau et al. based on optical data. We demonstrate that the planetary radius is insensitive to degeneracies in the fitting process. We use all of our observations to improve the transit ephemeris, finding P=1.5804043 +/- 0.0000005 days, and T0=2454964.94390 +/- 0.00006 BJD

    Extrasolar Planet Transits Observed at Kitt Peak National Observatory

    Full text link
    We obtained J-, H- and JH-band photometry of known extrasolar planet transiting systems at the 2.1-m Kitt Peak National Observatory Telescope using the FLAMINGOS infrared camera between October 2008 and October 2011. From the derived lightcurves we have extracted the mid-transit times, transit depths and transit durations for these events. The precise mid-transit times obtained help improve the orbital periods and also constrain transit-time variations of the systems. For most cases the published system parameters successfully accounted for our observed lightcurves, but in some instances we derive improved planetary radii and orbital periods. We complemented our 2.1-m infrared observations using CCD z'-band and B-band photometry (plus two Hydrogen Alpha filter observations) obtained with the Kitt Peak Visitor's Center telescope, and with four H-band transits observed in October 2007 with the NSO's 1.6-m McMath-Pierce Solar Telescope. The principal highlights of our results are: 1) our ensemble of J-band planetary radii agree with optical radii, with the best-fit relation being: (Rp/R*)J = 0.0017 + 0.979 (Rp/R*)optical, 2) We observe star spot crossings during the transit of WASP-11/HAT-P-10, 3) we detect star spot crossings by HAT-P-11b (Kepler-3b), thus confirming that the magnetic evolution of the stellar active regions can be monitored even after the Kepler mission has ended, and 4) we confirm a grazing transit for HAT-P-27/WASP-40. In total we present 57 individual transits of 32 known exoplanet systems.Comment: 33 pages, 6 figures, accepted in Publications of the Astronomical Society of the Pacifi

    The Habitable Zone Planet Finder Reveals a High Mass and Low Obliquity for the Young Neptune K2-25b

    Get PDF
    Using radial velocity data from the Habitable Zone Planet Finder, we have measured the mass of the Neptune-sized planet K2-25b, as well as the obliquity of its M4.5 dwarf host star in the 600–800 Myr Hyades cluster. This is one of the youngest planetary systems for which both of these quantities have been measured and one of the very few M dwarfs with a measured obliquity. Based on a joint analysis of the radial velocity data, time-series photometry from the K2 mission, and new transit light curves obtained with diffuser-assisted photometry, the planet's radius and mass are 3.44 ± 0.12 R_⊕ and 24.5_(-5.2)^(+5.7) M_⊕. These properties are compatible with a rocky core enshrouded by a thin hydrogen–helium atmosphere (5% by mass). We measure an orbital eccentricity of e = 0.43 ± 0.05. The sky-projected stellar obliquity is λ = 3° ± 16°, compatible with spin–orbit alignment, in contrast to other "hot Neptunes" that have been studied around older stars

    The Habitable-zone Planet Finder Reveals A High Mass and a Low Obliquity for the Young Neptune K2-25b

    Get PDF
    Using radial-velocity data from the Habitable-zone Planet Finder, we have measured the mass of the Neptune-sized planet K2-25b, as well as the obliquity of its M4.5-dwarf host star in the 600-800MYr Hyades cluster. This is one of the youngest planetary systems for which both of these quantities have been measured, and one of the very few M dwarfs with a measured obliquity. Based on a joint analysis of the radial velocity data, time-series photometry from the K2 mission, and new transit light curves obtained with diffuser-assisted photometry, the planet's radius and mass are 3.44±0.12R3.44\pm 0.12 \mathrm{R_\oplus} and 24.55.2+5.7M24.5_{-5.2}^{+5.7} \mathrm{M_\oplus}. These properties are compatible with a rocky core enshrouded by a thin hydrogen-helium atmosphere (5% by mass). We measure an orbital eccentricity of e=0.43±0.05e=0.43 \pm 0.05. The sky-projected stellar obliquity is λ=3±16\lambda=3 \pm 16^{\circ}, compatible with spin-orbit alignment, in contrast to other "hot Neptunes" that have been studied around older stars.Comment: Accepted for publication in AJ, 31 pages, 14 figure

    The immune system and the impact of zinc during aging

    Get PDF
    The trace element zinc is essential for the immune system, and zinc deficiency affects multiple aspects of innate and adaptive immunity. There are remarkable parallels in the immunological changes during aging and zinc deficiency, including a reduction in the activity of the thymus and thymic hormones, a shift of the T helper cell balance toward T helper type 2 cells, decreased response to vaccination, and impaired functions of innate immune cells. Many studies confirm a decline of zinc levels with age. Most of these studies do not classify the majority of elderly as zinc deficient, but even marginal zinc deprivation can affect immune function. Consequently, oral zinc supplementation demonstrates the potential to improve immunity and efficiently downregulates chronic inflammatory responses in the elderly. These data indicate that a wide prevalence of marginal zinc deficiency in elderly people may contribute to immunosenescence

    Inconsistent impacts of decomposer diversity on the stability of aboveground and belowground ecosystem functions

    Get PDF
    The intensive discussion on the importance of biodiversity for the stability of essential processes in ecosystems has prompted a multitude of studies since the middle of the last century. Nevertheless, research has been extremely biased by focusing on the producer level, while studies on the impacts of decomposer diversity on the stability of ecosystem functions are lacking. Here, we investigate the impacts of decomposer diversity on the stability (reliability) of three important aboveground and belowground ecosystem functions: primary productivity (shoot and root biomass), litter decomposition, and herbivore infestation. For this, we analyzed the results of three laboratory experiments manipulating decomposer diversity (1–3 species) in comparison to decomposer-free treatments in terms of variability of the measured variables. Decomposer diversity often significantly but inconsistently affected the stability of all aboveground and belowground ecosystem functions investigated in the present study. While primary productivity was mainly destabilized, litter decomposition and aphid infestation were essentially stabilized by increasing decomposer diversity. However, impacts of decomposer diversity varied between plant community and fertility treatments. There was no general effect of the presence of decomposers on stability and no trend toward weaker effects in fertilized communities and legume communities. This indicates that impacts of decomposers are based on more than effects on nutrient availability. Although inconsistent impacts complicate the estimation of consequences of belowground diversity loss, underpinning mechanisms of the observed patterns are discussed. Impacts of decomposer diversity on the stability of essential ecosystem functions differed between plant communities of varying composition and fertility, implicating that human-induced changes of biodiversity and land-use management might have unpredictable effects on the processes mankind relies on. This study therefore points to the necessity of also considering soil feedback mechanisms in order to gain a comprehensive and holistic understanding of the impacts of current global change phenomena on the stability of essential ecosystem functions

    CCL5-glutamate cross-talk in astrocyte-neuron communication in multiple sclerosis

    Get PDF
    The immune system (IS) and the central nervous system (CNS) are functionally coupled, and a large number of endogenous molecules (i.e., the chemokines for the IS and the classic neurotransmitters for the CNS) are shared in common between the two systems. These interactions are key elements for the elucidation of the pathogenesis of central inflammatory diseases. In recent years, evidence has been provided supporting the role of chemokines as modulators of central neurotransmission. It is the case of the chemokines CCL2 and CXCL12 that control pre- and/or post-synaptically the chemical transmission. This article aims to review the functional cross-talk linking another endogenous pro-inflammatory factor released by glial cells, i.e., the chemokine Regulated upon Activation Normal T-cell Expressed and Secreted (CCL5) and the principal neurotransmitter in CNS (i.e., glutamate) in physiological and pathological conditions. In particular, the review discusses preclinical data concerning the role of CCL5 as a modulator of central glutamatergic transmission in healthy and demyelinating disorders. The CCL5-mediated control of glutamate release at chemical synapses could be relevant either to the onset of psychiatric symptoms that often accompany the development of multiple sclerosis (MS), but also it might indirectly give a rationale for the progression of inflammation and demyelination. The impact of disease-modifying therapies for the cure of MS on the endogenous availability of CCL5 in CNS will be also summarized. We apologize in advance for omission in our coverage of the existing literature

    Circulating microRNAs in sera correlate with soluble biomarkers of immune activation but do not predict mortality in ART treated individuals with HIV-1 infection: A case control study

    Get PDF
    Introduction: The use of anti-retroviral therapy (ART) has dramatically reduced HIV-1 associated morbidity and mortality. However, HIV-1 infected individuals have increased rates of morbidity and mortality compared to the non-HIV-1 infected population and this appears to be related to end-organ diseases collectively referred to as Serious Non-AIDS Events (SNAEs). Circulating miRNAs are reported as promising biomarkers for a number of human disease conditions including those that constitute SNAEs. Our study sought to investigate the potential of selected miRNAs in predicting mortality in HIV-1 infected ART treated individuals. Materials and Methods: A set of miRNAs was chosen based on published associations with human disease conditions that constitute SNAEs. This case: control study compared 126 cases (individuals who died whilst on therapy), and 247 matched controls (individuals who remained alive). Cases and controls were ART treated participants of two pivotal HIV-1 trials. The relative abundance of each miRNA in serum was measured, by RTqPCR. Associations with mortality (all-cause, cardiovascular and malignancy) were assessed by logistic regression analysis. Correlations between miRNAs and CD4+ T cell count, hs-CRP, IL-6 and D-dimer were also assessed. Results: None of the selected miRNAs was associated with all-cause, cardiovascular or malignancy mortality. The levels of three miRNAs (miRs -21, -122 and -200a) correlated with IL-6 while miR-21 also correlated with D-dimer. Additionally, the abundance of miRs -31, -150 and -223, correlated with baseline CD4+ T cell count while the same three miRNAs plus miR- 145 correlated with nadir CD4+ T cell count. Discussion: No associations with mortality were found with any circulating miRNA studied. These results cast doubt onto the effectiveness of circulating miRNA as early predictors of mortality or the major underlying diseases that contribute to mortality in participants treated for HIV-1 infection
    corecore