261 research outputs found

    Hanle effect in the CN violet system with LTE modeling

    Full text link
    Weak entangled magnetic fields with mixed polarity occupy the main part of the quiet Sun. The Zeeman effect diagnostics fails to measure such fields because of cancellation in circular polarization. However, the Hanle effect diagnostics, accessible through the second solar spectrum, provides us with a very sensitive tool for studying the distribution of weak magnetic fields on the Sun. Molecular lines are very strong and even dominate in some regions of the second solar spectrum. The CN B2Σ−X2ΣB {}^{2} \Sigma - X {}^{2} \Sigma system is one of the richest and most promising systems for molecular diagnostics and well suited for the application of the differential Hanle effect method. The aim is to interpret observations of the CN B2Σ−X2ΣB {}^{2} \Sigma - X {}^{2} \Sigma system using the Hanle effect and to obtain an estimation of the magnetic field strength. We assume that the CN molecular layer is situated above the region where the continuum radiation is formed and employ the single-scattering approximation. Together with the Hanle effect theory this provides us with a model that can diagnose turbulent magnetic fields. We have succeeded in fitting modeled CN lines in several regions of the second solar spectrum to observations and obtained a magnetic field strength in the range from 10--30 G in the upper solar photosphere depending on the considered lines.Comment: Accepted for publication in Astronomy and Astrophysic

    NLTE modeling of Stokes vector center-to-limb variations in the CN violet system

    Full text link
    The solar surface magnetic field is connected with and even controls most of the solar activity phenomena. Zeeman effect diagnostics allow for measuring only a small fraction of the fractal-like structured magnetic field. The remaining hidden magnetic fields can only be accessed with the Hanle effect. Molecular lines are very convenient for applying the Hanle effect diagnostics thanks to the broad range of magnetic sensitivities in a narrow spectral region. With the UV version of the Zurich Imaging Polarimeter ZIMPOL II installed at the 45 cm telescope of the Istituto Ricerche Solari Locarno (IRSOL), we simultaneously observed intensity and linear polarization center-to-limb variations in two spectral regions containing the (0,0) and (1,1) bandheads of the CN B 2 {\Sigma} - X 2 {\Sigma} system. Here we present an analysis of these observations. We have implemented coherent scattering in molecular lines into a NLTE radiative transfer code. A two-step approach was used. First, we separately solved the statistical equilibrium equations and compute opacities and intensity while neglecting polariza- tion. Then we used these quantities as input for calculating scattering polarization and the Hanle effect. We have found that it is impossible to fit the intensity and polarization simultaneously at different limb angles in the frame- work of standard 1D modeling. The atmosphere models that provide correct intensity center-to-limb variations fail to fit linear polar- ization center-to-limb variations due to lacking radiation field anisotropy. We had to increase the anisotropy by means of a specially introduced free parameter. This allows us to successfully interpret our observations. We discuss possible reasons for underestimating the anisotropy in the 1D modeling.Comment: 15 pages, 10 figures, accepted for publication in Astronomy&Astrophysic

    Abnormal Visuo-vestibular Interactions in Vestibular Migraine: a Cross Sectional Study

    Get PDF
    Vestibular migraine is amongst the commonest causes of episodic vertigo. Chronically, patients with vestibular migraine develop abnormal responsiveness to both vestibular and visual stimuli characterised by heightened self-motion sensitivity and visually-induced dizziness. Yet, the neural mechanisms mediating such symptoms remain unknown. We postulate that such symptoms are attributable to impaired visuo-vestibular cortical interactions, which in-turn disrupts normal vestibular function. To assess this, we investigated whether prolonged, full-field visual motion exposure, which has previously been shown to modulate visual cortical excitability in both healthy individuals and avestibular patients, could disrupt vestibular ocular reflex (VOR) and vestibular-perceptual thresholds of self-motion during rotations. Our findings reveal that vestibular migraine patients exhibited abnormally elevated reflexive and perceptual vestibular thresholds at baseline. Following visual motion exposure, both reflex and perceptual thresholds were significantly further increased in vestibular migraine patients relative to healthy controls, migraineurs without vestibular symptoms and patients with episodic vertigo due to a peripheral inner-ear disorder. Our results provide support for the notion of altered visuo-vestibular cortical interactions in vestibular migraine, as evidenced by vestibular threshold elevation following visual motion exposure

    First polarimetric measurements and modeling of the Paschen-Back effect in CaH transitions

    Get PDF
    We report the first spectropolarimetric observations and modeling of CaH transitions in sunspots. We have detected strong polarization signals in many CaH lines from the A-X system, and we provide the first successful fit to the observed Stokes profiles using the previously developed theory of the Paschen-Back effect in arbitrary electronic states of diatomic molecules and polarized radiative transfer in molecular lines in stellar atmospheres. We analyze the CaH Stokes profiles together with quasi-simultaneous observations in TiO bands and conclude that CaH provides a valuable diagnostic of magnetic fields in sunspots, starspots, cool stars, and brown dwarfs

    Measurement of the proton and deuteron structure functions, F2p and F2d, and of the ratio sigma(L)/sigma(T)

    Get PDF
    The muon-proton and muon-deuteron inclusive deep inelastic scattering cross sections were measured in the kinematic range 0.002 < x < 0.60 and 0.5 < Q2 < 75 GeV2 at incident muon energies of 90, 120, 200 and 280 GeV. These results are based on the full data set collected by the New Muon Collaboration, including the data taken with a small angle trigger. The extracted values of the structure functions F2p and F2d are in good agreement with those from other experiments. The data cover a sufficient range of y to allow the determination of the ratio of the longitudinally to transversely polarised virtual photon absorption cross sections, R= sigma(L)/sigma(T), for 0.002 < x < 0.12 . The values of R are compatible with a perturbative QCD prediction; they agree with earlier measurements and extend to smaller x.Comment: In this replacement the erroneously quoted R values in tables 3-6 for x>0.12, and R1990 values in tables 5-6 for all x, have been corrected, and the cross sections in tables 3-4 have been adapted. Everything else, including the structure functions F2, remained unchanged. 22 pages, LateX, including figures, with two .sty files, and three separate f2tab.tex files for the F2-tables. Accepted for publication in Nucl.Phys.B 199

    Debye-Hueckel solution for steady electro-osmotic flow of a micropolar fluid in a cylindrical microcapillary

    Full text link
    Analytic expressions for the speed, flux, microrotation, stress, and couple stress in a micropolar fluid exhibiting steady, symmetric and one-dimensional electro-osmotic flow in a uniform cylindrical microcapillary were derived under the constraint of the Debye-Hueckel approximation, which is applicable when the cross-sectional radius of the microcapillary exceeds the Debye length, provided that the zeta potential is sufficiently small in magnitude. As the aciculate particles in a micropolar fluid can rotate without translation, micropolarity influences fluid speed, fluid flux, and one of the two non-zero components of the stress tensor. The axial speed in a micropolar fluid intensifies as the radius increases. The stress tensor is confined to the region near the wall of the microcapillary but the couple stress tensor is uniform across the cross-section.Comment: 19 page

    Recurrent stroke risk and cerebral microbleed burden in ischemic stroke and TIA A meta-analysis

    Get PDF
    OBJECTIVE: To determine associations between cerebral microbleed (CMB) burden with recurrent ischemic stroke (IS) and intracerebral hemorrhage (ICH) risk after IS or TIA. METHODS: We identified prospective studies of patients with IS or TIA that investigated CMBs and stroke (ICH and IS) risk during 3monthsfollow−up.Authorsprovidedaggregatesummary−leveldataonstrokeoutcomes,withCMBscategorizedaccordingtoburden(single,2–4,and3 months follow-up. Authors provided aggregate summary-level data on stroke outcomes, with CMBs categorized according to burden (single, 2–4, and 5 CMBs) and distribution. We calculated absolute event rates and pooled risk ratios (RR) using randomeffects meta-analysis. RESULTS: We included 5,068 patients from 15 studies. There were 115/1,284 (9.6%) recurrent IS events in patients with CMBs vs 212/3,781 (5.6%) in patients without CMBs (pooled RR 1.8 for CMBs vs no CMBs; 95% confidence interval [CI] 1.4–2.5). There were 49/1,142 (4.3%) ICH events in those with CMBs vs 17/2,912 (0.58%) in those without CMBs (pooled RR 6.3 for CMBs vs no CMBs; 95% CI 3.5–11.4). Increasing CMB burden increased the risk of IS (pooled RR [95% CI] 1.8 [1.0–3.1], 2.4 [1.3–4.4], and 2.7 [1.5–4.9] for 1 CMB, 2–4 CMBs, and 5CMBs,respectively)andICH(pooledRR[95CMB,2–4CMBs,and5 CMBs, respectively) and ICH (pooled RR [95% CI] 4.6 [1.9–10.7], 5.6 [2.4–13.3], and 14.1 [6.9–29.0] for 1 CMB, 2–4 CMBs, and 5 CMBs, respectively). CONCLUSIONS: CMBs are associated with increased stroke risk after IS or TIA. With increasing CMB burden (compared to no CMBs), the risk of ICH increases more steeply than that of IS. However, IS absolute event rates remain higher than ICH absolute event rates in all CMB burden categories
    • …
    corecore