5,726 research outputs found

    Exact Solution of the Isovector Proton Neutron Pairing Hamiltonian

    Get PDF
    The complete exact solution of the T=1 neutron-proton pairing Hamiltonian is presented in the context of the SO(5) Richardson-Gaudin model with non-degenerate single-particle levels and including isospin-symmetry breaking terms. The power of the method is illustrated with a numerical calculation for 64^{64}Ge for a pf+g9/2pf+g_{9/2} model space which is out of reach of modern shell-model codes.Comment: To be published by Physical Review Letter

    Contribution of the massive photon decay channel to neutrino cooling of neutron stars

    Get PDF
    We consider massive photon decay reactions via intermediate states of electron-electron-holes and proton-proton-holes into neutrino-antineutrino pairs in the course of neutron star cooling. These reactions may become operative in hot neutron stars in the region of proton pairing where the photon due to the Higgs-Meissner effect acquires an effective mass mγm_{\gamma} that is small compared to the corresponding plasma frequency. The contribution of these reactions to neutrino emissivity is calculated; it varies with the temperature and the photon mass as T3/2mγ7/2emγ/TT^{3/2}m_{\gamma}^{7/2} e^{-m_{\gamma}/T} for T<mγT < m_{\gamma}. Estimates show that these processes appear as extra efficient cooling channels of neutron stars at temperatures T(1091010)T \simeq (10^9-10^{10}) K.Comment: accepted to publication in Zh. Eksp. Teor. Fiz. (JETP

    \hbar as parameter of Minkowski metric in effective theory

    Full text link
    With the proper choice of the dimensionality of the metric components, the action for all fields becomes dimensionless. Such quantities as the vacuum speed of light c, the Planck constant \hbar, the electric charge e, the particle mass m, the Newton constant G never enter equations written in the covariant form, i.e., via the metric g^{\mu\nu}. The speed of light c and the Planck constant are parameters of a particular two-parametric family of solutions of general relativity equations describing the flat isotropic Minkowski vacuum in effective theory emerging at low energy: g^{\mu\nu}=diag(-\hbar^2, (\hbar c)^2, (\hbar c)^2, (\hbar c)^2). They parametrize the equilibrium quantum vacuum state. The physical quantities which enter the covariant equations are dimensionless quantities and dimensionful quantities of dimension of rest energy M or its power. Dimensionless quantities include the running coupling `constants' \alpha_i; topological and geometric quantum numbers (angular momentum quantum number j, weak charge, electric charge q, hypercharge, baryonic and leptonic charges, number of atoms N, etc). Dimensionful parameters include the rest energies of particles M_n (or/and mass matrices); the gravitational coupling K with dimension of M^2; cosmological constant with dimension M^4; etc. In effective theory, the interval s has the dimension of 1/M; it characterizes the dynamics of particles in the quantum vacuum rather than geometry of space-time. We discuss the effective action, and the measured physical quantities resulting from the action, including parameters which enter the Josepson effect, quantum Hall effect, etc.Comment: 18 pages, no figures, extended version of the paper accepted in JETP Letter

    Deformations of the fermion realization of the sp(4) algebra and its subalgebras

    Get PDF
    With a view towards future applications in nuclear physics, the fermion realization of the compact symplectic sp(4) algebra and its q-deformed versions are investigated. Three important reduction chains of the sp(4) algebra are explored in both the classical and deformed cases. The deformed realizations are based on distinct deformations of the fermion creation and annihilation operators. For the primary reduction, the su(2) sub-structure can be interpreted as either the spin, isospin or angular momentum algebra, whereas for the other two reductions su(2) can be associated with pairing between fermions of the same type or pairing between two distinct fermion types. Each reduction provides for a complete classification of the basis states. The deformed induced u(2) representations are reducible in the action spaces of sp(4) and are decomposed into irreducible representations.Comment: 28 pages, LaTeX 12pt article styl

    Local Density Approximation for proton-neutron pairing correlations. I. Formalism

    Full text link
    In the present study we generalize the self-consistent Hartree-Fock-Bogoliubov (HFB) theory formulated in the coordinate space to the case which incorporates an arbitrary mixing between protons and neutrons in the particle-hole (p-h) and particle-particle (p-p or pairing) channels. We define the HFB density matrices, discuss their spin-isospin structure, and construct the most general energy density functional that is quadratic in local densities. The consequences of the local gauge invariance are discussed and the particular case of the Skyrme energy density functional is studied. By varying the total energy with respect to the density matrices the self-consistent one-body HFB Hamiltonian is obtained and the structure of the resulting mean fields is shown. The consequences of the time-reversal symmetry, charge invariance, and proton-neutron symmetry are summarized. The complete list of expressions required to calculate total energy is presented.Comment: 22 RevTeX page

    Constraints on Hidden Photon Models from Electron g-2 and Hydrogen Spectroscopy

    Full text link
    The hidden photon model is one of the simplest models which can explain the anomaly of the muon anomalous magnetic moment (g-2). The experimental constraints are studied in detail, which come from the electron g-2 and the hydrogen transition frequencies. The input parameters are set carefully in order to take dark photon contributions into account and to prevent the analysis from being self-inconsistent. It is shown that the new analysis provides a constraint severer by more than one order of magnitude than the previous result.Comment: 18 pages, 2 figures, 1 table. v2: minor correction

    Hydrogen and Helium Atoms and Molecules in an Intense Magnetic Field

    Get PDF
    We calculate the atomic structure of hydrogen and helium, atoms and molecules in an intense magnetic field, analytically and numerically with a judiciously chosen basis.Comment: 16 pages, 5 figures, to appear in Phys. Rev.

    Single-electron transport driven by surface acoustic waves: moving quantum dots versus short barriers

    Full text link
    We have investigated the response of the acoustoelectric current driven by a surface-acoustic wave through a quantum point contact in the closed-channel regime. Under proper conditions, the current develops plateaus at integer multiples of ef when the frequency f of the surface-acoustic wave or the gate voltage Vg of the point contact is varied. A pronounced 1.1 MHz beat period of the current indicates that the interference of the surface-acoustic wave with reflected waves matters. This is supported by the results obtained after a second independent beam of surface-acoustic wave was added, traveling in opposite direction. We have found that two sub-intervals can be distinguished within the 1.1 MHz modulation period, where two different sets of plateaus dominate the acoustoelectric-current versus gate-voltage characteristics. In some cases, both types of quantized steps appeared simultaneously, though at different current values, as if they were superposed on each other. Their presence could result from two independent quantization mechanisms for the acoustoelectric current. We point out that short potential barriers determining the properties of our nominally long constrictions could lead to an additional quantization mechanism, independent from those described in the standard model of 'moving quantum dots'.Comment: 25 pages, 12 figures, to be published in a special issue of J. Low Temp. Phys. in honour of Prof. F. Pobel
    corecore