55 research outputs found

    Trace element constraints on the origins of highly metamorphosed Antarctic eucrites

    Get PDF
    We have compared the trace element distributions of four highly metamorphosed Antarctic eucrites with those of previously studied noncumulate eucrites. All eucrites studied here exhibit some evidence for reequilibration of the REE and/or other trace elements. LREE-enrichments are observed in the silicate phases, and are attributed to remobilization of the REE from Ca-phosphates. Similarly, elevated Zr and Ti abundances in some pigeonites may be the result of redistribution from oxide phases such as ilmenite. Thus, trace element distributions cannot provide petrogenetic information about the origin of these eucrites. However, combined with petrographic information, the data do provide information about the nature and degree of heating and metamorphism experienced by these rocks. For example, Y-86763 appears to have experienced a rapid secondary reheating, in addition to an extended period of thermal metamorphism. Two granulitic eucrites appear to have been less extensively affected by metamorphism, despite the fact that they are strongly recrystallized. Although plagioclase REE compositions are LREE-enriched compared to those of noncumulate eucrites, pigeonites have LREE/HREE ratios that fall close to the non-cumulate line. Furthermore, they seem to have retained their original Ti, Zr and Y abundances. Finally, some trace elements, such as Na, K, Sr and Ba in plagioclase, do not appear to have been redistributed between mineral phases in these eucrites, and provide links to less equilibrated non-cumulate eucrites

    SIMS Studies of Allende Projectiles Fired into Stardust-type Aluminum Foils at 6 km/s

    Get PDF
    We have explored the feasibility of C-, N-, and O-isotopic measurements by NanoSIMS and of elemental abundance determinations by TOF-SIMS on residues of Allende projectiles that impacted Stardust-type aluminum foils in the laboratory at 6 km/s. These investigations are part of a consortium study aimed at providing the foundation for the characterization of matter associated with micro-craters that were produced during the encounter of the Stardust space probe with comet 81P/Wild 2. Eleven experimental impact craters were studied by NanoSIMS and eighteen by TOF-SIMS. Crater sizes were between 3 and 190 microns. The NanoSIMS measurements have shown that the crater morphology has only a minor effect on spatial resolution and on instrumental mass fractionation. The achievable spatial resolution is always better than 200 nm, and C- and O-isotopic ratios can be measured with a precision of several percent at a scale of several 100 nm, the typical size of presolar grains. This clearly demonstrates that presolar matter, provided it survives the impact into the aluminum foil partly intact, is recognizable even if embedded in material of Solar System origin. TOF-SIMS studies are restricted to materials from the crater rim. The element ratios of the major rockforming elements in the Allende projectiles are well characterized by the TOF-SIMS measurements, indicating that fractionation of those elements during impact can be expected to be negligible. This permits information on the type of impactor material to be obtained. For any more detailed assignments to specific chondrite groups, however, information on the abundances of the light elements, especially C, is crucial

    Multiple generations of grain aggregation in different environments preceded solar system body formation

    Get PDF
    Manuscript submitted to Proceedings of the National Academy of ScienceThe solar system formed from interstellar dust and gas in a molecular cloud. Astronomical observations show that typical interstellar dust consists of amorphous (a-) silicate and organic carbon. Bona fide physical samples for laboratory studies would yield unprecedented insight about solar system formation, but they were largely destroyed. The most likely repositories of surviving presolar dust are the least altered extraterrestrial materials, interplanetary dust particles (IDPs) with probable cometary origins. Cometary IDPs contain abundant submicron a-silicate grains called GEMS, believed to be carbon-free. Some have detectable isotopically anomalous a-silicate components from other stars, proving they are preserved dust inherited from the interstellar medium. However, it is debated whether the majority of GEMS predate the solar system or formed in the solar nebula by condensation of high-temperature (>1300K) gas. Here, we map IDP compositions with single nanometer-scale resolution and find that GEMS contain organic carbon. Mapping reveals two generations of grain aggregation, the key process in growth from dust grains to planetesimals, mediated by carbon. GEMS grains, some with a-silicate subgrains mantled by organic carbon, comprise the earliest generation of aggregates. These aggregates (and other grains) are encapsulated in lower density organic carbon matrix, indicating a second generation of aggregation. Since this organic carbon thermally decomposes above ~450K, GEMS cannot have accreted in the hot solar nebula and formed, instead, in the cold presolar molecular cloud and/or outer protoplanetary disk. We suggest that GEMS are consistent with surviving interstellar dust, condensed in situ, and cycled through multiple molecular clouds.Portions of this work were performed at the Molecular Foundry and the Advanced Light Source at Lawrence Berkeley National Laboratory, which are supported by the Office of Science, Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC02-05CH11231. HAI acknowledges funding by NASA’s Laboratory Analysis of Returned Samples and Emerging Worlds Programs (NNX14AH86G and NNX16AK41G). JPB acknowledges funding by NASA’s Cosmochemistry Program (NNX14AI39G). CF acknowledges funding by NASA’s Cosmochemistry Program (NNX14AG25G)

    Non-Random Spatial Distribution of Impacts in the Stardust Cometary Collector

    Get PDF
    In January 2004, the Stardust spacecraft flew through the coma of comet P81/Wild2 at a relative speed of 6.1 km/sec. Cometary dust was collected at in a 0.1 sq m collector consisting of aerogel tiles and aluminum foils. Two years later, the samples successfully returned to earth and were recovered. We report the discovery that impacts in the Stardust cometary collector are not distributed randomly in the collecting media, but appear to be clustered on scales smaller than approx.10 cm. We also report the discovery of at least two populations of oblique tracks. We evaluated several hypotheses that could explain the observations. No hypothesis was consistent with all the observations, but the preponderance of evidence points toward at least one impact on the central Whipple shield of the spacecraft as the origin of both clustering and low-angle oblique tracks. High-angle oblique tracks unambiguously originate from a noncometary impact on the spacecraft bus just forward of the collector. Here we summarize the observations, and review the evidence for and against three scenarios that we have considered for explaining the impact clustering found on the Stardust aerogel and foil collectors

    Stardust in STARDUST - the C, N, and O Isotopic Compositions of Wild 2 Cometary Matter in Al foil Impacts

    Get PDF
    In January 2006, the STARDUST mission successfully returned dust samples from the tail of comet 81P/Wild 2 in two principal collection media, low density silica aerogel and Al foil. While hypervelocity impacts at 6.1 km/s, the encounter velocity of STARDUST, into Al foils are generally highly disruptive for natural, silicate-dominated impactors, previous studies have shown that many craters retain sufficient residue to allow a determination of the elemental and isotopic compositions of the original projectile. We have used the NanoSIMS to perform C, N, and O isotope imaging measurements on four large (59-370 microns diameter) and on 47 small (0.32-1.9 microns diameter) Al foil impact craters as part of the STARDUST Preliminary Examination. Most analyzed residues in and around these craters are isotopically normal (solar) in their C, N, and O isotopic compositions. However, the debris in one large crater shows an average 15N enrichment of approx. 450 %, which is similar to the bulk composition of some isotopically primitive interplanetary dust particles. A 250 nm grain in another large crater has an O-17 enrichment with approx. 2.65 times the solar O-17/O-16 ratio. Such an O isotopic composition is typical for circumstellar oxide or silicate grains from red giant or asymptotic giant branch stars. The discovery of this circumstellar grain clearly establishes that there is authentic stardust in the cometary samples returned by the STARDUST mission. However, the low apparent abundance of circumstellar grains in Wild 2 samples and the preponderance of isotopically normal material indicates that the cometary matter is a diverse assemblage of presolar and solar system materials

    “Dogged” Search of Fresh Nakhla Surfaces Reveals New Alteration Textures

    Get PDF
    Special Issue: 74th Annual Meeting of the Meteoritical Society, August 8-12, 2011, London, U.K.International audienceCarbonaceous chondrites are considered as amongst the most primitive Solar System samples available. One of their primitive characteristics is their enrichment in volatile elements.This includes hydrogen, which is present in hydrated and hydroxylated minerals. More precisely, the mineralogy is expected to be dominated by phyllosilicates in the case of CM chondrites, and by Montmorillonite type clays in the case of CI. Here, in order to characterize and quantify the abundance of lowtemperature minerals in carbonaceous chondrites, we performed thermogravimetric analysis of matrix fragments of Tagish Lake, Murchison and Orgueil

    Constraining the Origin of Impact Craters on Al Foils from the Stardust Interstellar Dust Collector

    Get PDF
    Preliminary examination (PE) of the aerogel tiles and Al foils from the Stardust Interstellar Dust Collector has revealed multiple impact features. Some are most likely due to primary impacts of interstellar dust (ISD) grains, and others are associated with secondary impacts of spacecraft debris, and possibly primary impacts of interplanetary dust particles (IDPs) [1, 2]. The current focus of the PE effort is on constraining the origin of the individual impact features so that definitive results from the first direct laboratory analysis of contemporary ISD can be reported. Because crater morphology depends on impacting particle shape and composition, in addition to the angle and direction of impact, unique particle trajectories are not easily determined. However, elemental analysis of the crater residues can distinguish real cosmic dust from the spacecraft debris, due to the low cosmic abundance of many of the elements in the spacecraft materials. We present here results from the elemental analysis of 24 craters and discuss the possible origins of 4 that are identified as candidate ISD impact

    Microbial community dynamics and stability during an ammonia-induced shift to syntrophic acetate oxidation

    Get PDF
    Anaerobic digesters rely on the diversity and distribution of parallel metabolic pathways mediated by complex syntrophic microbial communities to maintain robust and optimal performance. Using mesophilic swine waste digesters, we experimented with increased ammonia loading to induce a shift from aceticlastic methanogenesis to an alternative acetate-consuming pathway of syntrophic acetate oxidation. In comparison with control digesters, we observed shifts in bacterial 16S rRNA gene content and in functional gene repertoires over the course of the digesters' 3-year operating period. During the first year, under identical startup conditions, all bioreactors mirrored each other closely in terms of bacterial phylotype content, phylogenetic structure, and evenness. When we perturbed the digesters by increasing the ammonia concentration or temperature, the distribution of bacterial phylotypes became more uneven, followed by a return to more even communities once syntrophic acetate oxidation had allowed the experimental bioreactors to regain stable operation. The emergence of syntrophic acetate oxidation coincided with a partial shift from aceticlastic to hydrogenotrophic methanogens. Our 16S rRNA gene analysis also revealed that acetate-fed enrichment experiments resulted in communities that did not represent the bioreactor community. Analysis of shotgun sequencing of community DNA suggests that syntrophic acetate oxidation was carried out by a heterogeneous community rather than by a specific keystone population with representatives of enriched cultures with this metabolic capacity

    Final Reports of the Stardust ISPE: Seven Probable Interstellar Dust Particles

    Get PDF
    The Stardust spacecraft carried the first spaceborne collector specifically designed to capture and return a sample of contemporary interstellar dust to terrestrial laboratories for analysis [1]. The collector was exposed to the interstellar dust stream in two periods in 2000 and 2002 with a total exposure of approximately 1.8 10(exp 6) square meters sec. Approximately 85% of the collector consisted of aerogel, and the remainder consisted of Al foils. The Stardust Interstellar Preliminary Examination (ISPE) was a consortiumbased effort to characterize the collection in sufficient detail to enable future investigators to make informed sample requests. Among the questions to be answered were these: How many impacts are consistent in their characteristics with interstellar dust, with interplanetary dust, and with secondary ejecta from impacts on the spacecraft? Are the materials amorphous or crystalline? Are organics detectable? An additional goal of the ISPE was to develop or refine the techniques for preparation, analysis, and curation of these tiny samples, expected to be approximately 1 picogram or smaller, roughly three orders of magnitude smaller in mass than the samples in other small particle collections in NASA's collections - the cometary samples returned by Stardust, and the collection of Interplanetary Dust Particles collected in the stratosphere

    Microanalysis of Hypervelocity Impact Residues of Possible Interstellar Origin

    Get PDF
    The NASA Stardust spacecraft deployed two collector trays, one dedicated to the collection of dust from Comet Wild 2, and the other for the capture of interstellar dust (ISD). The samples were returned successfully to Earth in 2006, and now provide an unprecedented opportunity for laboratory-based microanalysis of materials from the outer solar system and beyond. Results from the cometary sample studies have demonstrated that Wild 2 contains much more refractory condensate material and much less pristine extra-solar material than expected, which further indicates that there was significant transport of inner solar system materials to the Kuiper Belt in the early solar system [1]. The analysis of the interstellar samples is still in the preliminary examination (PE) phase, due to the level of difficulty in the definitive identification of the ISD features, the overall low abundance, and its irreplaceable nature, which necessitates minimally invasive measurements [2]. We present here coordinated microanalysis of the impact features on the Al foils, which have led to the identification of four impacts that are possibly attributable to interstellar dust. Results from the study of four ISD candidates captured in aerogel are presented elsewhere [2]
    corecore