265 research outputs found

    Fission yeast Pcp1 links polo kinase-mediated mitotic entry to γ-tubulin-dependent spindle formation

    Get PDF
    The centrosomal pericentrin-related proteins play pivotal roles in various aspects of cell division; however their underlying mechanisms remain largely elusive. Here we show that fission-yeast pericentrin-like Pcp1 regulates multiple functions of the spindle pole body (SPB) through recruiting two critical factors, the γ-tubulin complex (γ-TuC) and polo kinase (Plo1). We isolated two pcp1 mutants (pcp1-15 and pcp1-18) that display similar abnormal spindles, but with remarkably different molecular defects. Both mutants exhibit defective monopolar spindle microtubules that emanate from the mother SPB. However, while pcp1-15 fails to localise the γ-TuC to the mitotic SPB, pcp1-18 is specifically defective in recruiting Plo1. Consistently Pcp1 forms a complex with both γ-TuC and Plo1 in the cell. pcp1-18 is further defective in the mitotic-specific reorganisation of the nuclear envelope (NE), leading to impairment of SPB insertion into the NE. Moreover pcp1-18, but not pcp1-15, is rescued by overproducing nuclear pore components or advancing mitotic onset. The central role for Pcp1 in orchestrating these processes provides mechanistic insight into how the centrosome regulates multiple cellular pathways

    The Shapes of Cooperatively Rearranging Regions in Glass Forming Liquids

    Full text link
    The shapes of cooperatively rearranging regions in glassy liquids change from being compact at low temperatures to fractal or ``stringy'' as the dynamical crossover temperature from activated to collisional transport is approached from below. We present a quantitative microscopic treatment of this change of morphology within the framework of the random first order transition theory of glasses. We predict a correlation of the ratio of the dynamical crossover temperature to the laboratory glass transition temperature, and the heat capacity discontinuity at the glass transition, Delta C_p. The predicted correlation agrees with experimental results for the 21 materials compiled by Novikov and Sokolov.Comment: 9 pages, 6 figure

    Frequency, course and correlates of alcohol use from adolescence to young adulthood in a Swiss community survey

    Get PDF
    BACKGROUND: Few studies have analyzed the frequency of alcohol use across time from adolescence to young adulthood and its outcome in young adulthood. A Swiss longitudinal multilevel assessment project using various measures of psychopathology and psychosocial variables allowed for the study of the frequency and correlates of alcohol use so that this developmental trajectory may be better understood. METHOD: Alcohol use was studied by a questionnaire in a cohort of N = 593 subjects who had been assessed at three times between adolescence and young adulthood within the Zurich Psychology and Psychopathology Study (ZAPPS). Other assessment included questionnaire data measuring emotional and behavioural problems, life events, coping style, self-related cognitions, perceived parenting style and school environment, and size and efficiency of the social network. RESULTS: The increase of alcohol use from early adolescence to young adulthood showed only a few sex-specific differences in terms of the amount of alcohol consumption and the motives to drink. In late adolescence and young adulthood, males had a higher amount of alcohol consumption and were more frequently looking for drunkenness and feeling high. Males also experienced more negative consequences of alcohol use. A subgroup of heavy or problem drinkers showed a large range of emotional and behavioural problems and further indicators of impaired psychosocial functioning both in late adolescence and young adulthood. CONCLUSION: This Swiss community survey documents that alcohol use is problematic in a sizeable proportion of youth and goes hand in hand with a large number of psychosocial problems

    Effect of within-session breaks in play on responsible gambling behaviour during sustained monetary losses

    Get PDF
    Rapid, continuous gambling formats are associated with higher risks for gambling-related harm in terms of excessive monetary and time expenditure. The current study investigated the effect on gambling response latency and persistence, of a new form of within-game intervention that required players to actively engage in response inhibition via monitoring for stop signals. Seventy-four experienced electronic gaming machine gamblers, with a mean age of 35.28 years, were recruited to participate in a rapid, continuous gambling task where real money could be won and lost. Participants were randomly allocated to either the control condition where no intervention was presented, or either a condition with a passive three minute break in play or a condition with a three minute intervention that required participants to engage in response inhibition. Although there was no main effect for experimental condition on gambling persistence, both interventions were effective in elevating response latency during a period of sustained losses. It was concluded that within-game interventions that create an enforced break in play are effective in increasing response latency between bets during periods of sustained losses. Furthermore, within-game interventions that require active involvement appear to be more effective in increasing response latency than standard, passive breaks in play

    Genome Wide Association Identifies PPFIA1 as a Candidate Gene for Acute Lung Injury Risk Following Major Trauma

    Get PDF
    Acute Lung Injury (ALI) is a syndrome with high associated mortality characterized by severe hypoxemia and pulmonary infiltrates in patients with critical illness. We conducted the first investigation to use the genome wide association (GWA) approach to identify putative risk variants for ALI. Genome wide genotyping was performed using the Illumina Human Quad 610 BeadChip. We performed a two-stage GWA study followed by a third stage of functional characterization. In the discovery phase (Phase 1), we compared 600 European American trauma-associated ALI cases with 2266 European American population-based controls. We carried forward the top 1% of single nucleotide polymorphisms (SNPs) at p<0.01 to a replication phase (Phase 2) comprised of a nested case-control design sample of 212 trauma-associated ALI cases and 283 at-risk trauma non-ALI controls from ongoing cohort studies. SNPs that replicated at the 0.05 level in Phase 2 were subject to functional validation (Phase 3) using expression quantitative trait loci (eQTL) analyses in stimulated B-lymphoblastoid cell lines (B-LCL) in family trios. 159 SNPs from the discovery phase replicated in Phase 2, including loci with prior evidence for a role in ALI pathogenesis. Functional evaluation of these replicated SNPs revealed rs471931 on 11q13.3 to exert a cis-regulatory effect on mRNA expression in the PPFIA1 gene (p = 0.0021). PPFIA1 encodes liprin alpha, a protein involved in cell adhesion, integrin expression, and cell-matrix interactions. This study supports the feasibility of future multi-center GWA investigations of ALI risk, and identifies PPFIA1 as a potential functional candidate ALI risk gene for future research

    Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant viruses at the ecosystem scale

    Get PDF
    Disease emergence events regularly result from human activities such as agriculture, which frequently brings large populations of genetically uniform hosts into contact with potential pathogens. Although viruses cause nearly 50% of emerging plant diseases, there is little systematic information about virus distribution across agro-ecological interfaces and large gaps in understanding of virus diversity in nature. Here we applied a novel landscape-scale geometagenomics approach to examine relationships between agricultural land use and distributions of plantassociated viruses in two Mediterranean-climate biodiversity hotspots (Western Cape region of South Africa and Rhône river delta region of France). In total, we analysed 1725 geo-referenced plant samples collected over two years from 4.5 × 4.5 km2 grids spanning farmlands and adjacent uncultivated vegetation. We found substantial virus prevalence (25.8–35.7%) in all ecosystems, but prevalence and identified family-level virus diversity were greatest in cultivated areas, with some virus families displaying strong agricultural associations. Our survey revealed 94 previously unknown virus species, primarily from uncultivated plants. This is the first effort to systematically evaluate plant-associated viromes across broad agro-ecological interfaces. Our findings indicate that agriculture substantially influences plant virus distributions and highlight the extent of current ignorance about the diversity and roles of viruses in nature

    Quantifying Intramolecular Binding in Multivalent Interactions: A Structure-Based Synergistic Study on Grb2-Sos1 Complex

    Get PDF
    Numerous signaling proteins use multivalent binding to increase the specificity and affinity of their interactions within the cell. Enhancement arises because the effective binding constant for multivalent binding is larger than the binding constants for each individual interaction. We seek to gain both qualitative and quantitative understanding of the multivalent interactions of an adaptor protein, growth factor receptor bound protein-2 (Grb2), containing two SH3 domains interacting with the nucleotide exchange factor son-of-sevenless 1 (Sos1) containing multiple polyproline motifs separated by flexible unstructured regions. Grb2 mediates the recruitment of Sos1 from the cytosol to the plasma membrane where it activates Ras by inducing the exchange of GDP for GTP. First, using a combination of evolutionary information and binding energy calculations, we predict an additional polyproline motif in Sos1 that binds to the SH3 domains of Grb2. This gives rise to a total of five polyproline motifs in Sos1 that are capable of binding to the two SH3 domains of Grb2. Then, using a hybrid method combining molecular dynamics simulations and polymer models, we estimate the enhancement in local concentration of a polyproline motif on Sos1 near an unbound SH3 domain of Grb2 when its other SH3 domain is bound to a different polyproline motif on Sos1. We show that the local concentration of the Sos1 motifs that a Grb2 SH3 domain experiences is approximately 1000 times greater than the cellular concentration of Sos1. Finally, we calculate the intramolecular equilibrium constants for the crosslinking of Grb2 on Sos1 and use thermodynamic modeling to calculate the stoichiometry. With these equilibrium constants, we are able to predict the distribution of complexes that form at physiological concentrations. We believe this is the first systematic analysis that combines sequence, structure, and thermodynamic analyses to determine the stoichiometry of the complexes that are dominant in the cellular environment

    The Effect of a ΔK280 Mutation on the Unfolded State of a Microtubule-Binding Repeat in Tau

    Get PDF
    Tau is a natively unfolded protein that forms intracellular aggregates in the brains of patients with Alzheimer's disease. To decipher the mechanism underlying the formation of tau aggregates, we developed a novel approach for constructing models of natively unfolded proteins. The method, energy-minima mapping and weighting (EMW), samples local energy minima of subsequences within a natively unfolded protein and then constructs ensembles from these energetically favorable conformations that are consistent with a given set of experimental data. A unique feature of the method is that it does not strive to generate a single ensemble that represents the unfolded state. Instead we construct a number of candidate ensembles, each of which agrees with a given set of experimental constraints, and focus our analysis on local structural features that are present in all of the independently generated ensembles. Using EMW we generated ensembles that are consistent with chemical shift measurements obtained on tau constructs. Thirty models were constructed for the second microtubule binding repeat (MTBR2) in wild-type (WT) tau and a ΔK280 mutant, which is found in some forms of frontotemporal dementia. By focusing on structural features that are preserved across all ensembles, we find that the aggregation-initiating sequence, PHF6*, prefers an extended conformation in both the WT and ΔK280 sequences. In addition, we find that residue K280 can adopt a loop/turn conformation in WT MTBR2 and that deletion of this residue, which can adopt nonextended states, leads to an increase in locally extended conformations near the C-terminus of PHF6*. As an increased preference for extended states near the C-terminus of PHF6* may facilitate the propagation of β-structure downstream from PHF6*, these results explain how a deletion at position 280 can promote the formation of tau aggregates

    New insight into kinetics behavor of the structural formation process in Agar gelation

    Full text link
    A time-resolved experimental study on the kinetics and relaxation of the structural formation process in gelling Agar-water solutions was carried out using our custom-built torsion resonator. The study was based on measurements of three naturally cooled solutions with agar concentrations of 0.75%, 1.0% and 2.0% w/w. It was found that the natural-cooling agar gelation process could be divided into three stages, sol stage (Stage I), gelation zone (Stage II) and gel stage (Stage III), based on the time/temperature evolutions of the structural development rate (SDR). An interesting fluctuant decaying behavior of SDR was observed in Stage II and III, indicative of a sum of multiple relaxation processes and well described by a multiple-order Gaussisn-like equation: . More interestingly, the temperature dependences of the fitted values of Wn in Stage II and Stage III were found to follow the different Arrhenius laws, with different activation energies of EaII= 39-74 KJ/mol and EaIII~7.0 KJ/mol. The two different Arrhenius-like behaviors respectively suggest that dispersions in Stage II be attributed to the relaxation of the self-assembly of agar molecules or the growth of junction zones en route to gelation, in which the formation or fission of hydrogen bonding interactions plays an important role; and that dispersions in Stage III be attributed to the relaxation dynamics of water released from various size domains close to the domain of the viscous flow of water during the syneresis process.Comment: 24 pages, 4 figures, 1 tabl
    corecore