250 research outputs found

    The role of stellar radial motions in shaping galaxy surface brightness profiles

    Get PDF
    Aims. The physics driving features such as breaks observed in galaxy surface brightness (SB) profiles remains contentious. Here, we assess the importance of stellar radial motions in shaping their characteristics. Methods. We use the simulated Milky Way-mass cosmological discs from the Ramses Disc Environment Study (RaDES) to characterise the radial redistribution of stars in galaxies displaying type-I (pure exponentials), II (downbending), and III (upbending) SB profiles. We compare radial profiles of the mass fractions and the velocity dispersions of different sub-populations of stars according to their birth and current location. Results. Radial redistribution of stars is important in all galaxies regardless of their light profiles. Type-II breaks seem to be a consequence of the combined effects of outward-moving and accreted stars. The former produce shallower inner profiles (lack of stars in the inner disc) and accumulate material around the break radius and beyond, strengthening the break; the latter can weaken or even convert the break into a pure exponential. Further accretion from satellites can concentrate material in the outermost parts, leading to type-III breaks that can coexist with type-II breaks, but situated further out. Type-III galaxies would be the result of an important radial redistribution of material throughout the entire disc, as well as a concentration of accreted material in the outskirts. In addition, type-III galaxies display the most efficient radial redistribution and the largest number of accreted stars, followed by type-I and II systems, suggesting that type-I galaxies may be an intermediate case between types-II and III. In general, the velocity dispersion profiles of all galaxies tend to flatten or even increase around the locations where the breaks are found. The age and metallicity profiles are also affected, exhibiting different inner gradients depending on their SB profile, being steeper in the case of type-II systems (as found observationally). The steep type-II profiles might be inherent to their formation rather than acquired via radial redistribution

    Opacity calculation for target physics using the ABAKO/RAPCAL code

    Get PDF
    Radiative properties of hot dense plasmas remain a subject of current interest since they play an important role in inertial confinement fusion (ICF) research, as well as in studies on stellar physics. In particular, the understanding of ICF plasmas requires emissivities and opacities for both hydro-simulations and diagnostics. Nevertheless, the accurate calculation of these properties is still an open question and continuous efforts are being made to develop new models and numerical codes that can facilitate the evaluation of such properties. In this work the set of atomic models ABAKO/RAPCAL is presented, as well as a series of results for carbon and aluminum to show its capability for modeling the population kinetics of plasmas in both LTE and NLTE regimes. Also, the spectroscopic diagnostics of a laser-produced aluminum plasma using ABAKO/RAPCAL is discussed. Additionally, as an interesting application of these codes, fitting analytical formulas for Rosseland and Planck mean opacities for carbon plasmas are reported. These formulas are useful as input data in hydrodynamic simulation of targets where the computation task is so hard that in line computation with sophisticated opacity codes is prohibitive

    Situations of agitation and violence: the reality in an acute Inpatient ward

    Get PDF
    A agressividade/violência apesar de estar presente em todos os indivíduos e sociedades, pode manifestar-se de diferentes formas. Se por um lado é considerada como algo inato ao Homem, por outro, é cada vez mais encarada como um fenómeno social com um enquadramento cultural, social e histórico. Os comportamentos violentos, num internamento psiquiátrico, não podem, e não devem ser, atribuídos somente a factores directamente ligados ao doente. Há um conjunto de factores que podem favorecer um clima de hostilidade dentro da unidade de internamento. Deve ser tido em conta o ambiente da enfermaria e o papel dos profissionais de saúde, em particular o papel dos enfermeiros

    Large-Scale Magnetic Fields, Dark Energy and QCD

    Full text link
    Cosmological magnetic fields are being observed with ever increasing correlation lengths, possibly reaching the size of superclusters, therefore disfavouring the conventional picture of generation through primordial seeds later amplified by galaxy-bound dynamo mechanisms. In this paper we put forward a fundamentally different approach that links such large-scale magnetic fields to the cosmological vacuum energy. In our scenario the dark energy is due to the Veneziano ghost (which solves the U(1)AU(1)_A problem in QCD). The Veneziano ghost couples through the triangle anomaly to the electromagnetic field with a constant which is unambiguously fixed in the standard model. While this interaction does not produce any physical effects in Minkowski space, it triggers the generation of a magnetic field in an expanding universe at every epoch. The induced energy of the magnetic field is thus proportional to cosmological vacuum energy: ρEMB2(α4π)2ρDE\rho_{EM}\simeq B^2 \simeq (\frac{\alpha}{4\pi})^2 \rho_{DE}, ρDE\rho_{DE} hence acting as a source for the magnetic energy ρEM\rho_{EM}. The corresponding numerical estimate leads to a magnitude in the nG range. There are two unique and distinctive predictions of our proposal: an uninterrupted active generation of Hubble size correlated magnetic fields throughout the evolution of the universe; the presence of parity violation on the enormous scales 1/H1/H, which apparently has been already observed in CMB. These predictions are entirely rooted into the standard model of particle physics.Comment: jhep style, 22 pages, v2 with updated estimates and extended discussion on parity violation, v3 as published (references updated

    Selecting Negative Samples for PPI Prediction Using Hierarchical Clustering Methodology

    Get PDF
    Protein-protein interactions (PPIs) play a crucial role in cellular processes. In the present work, a new approach is proposed to construct a PPI predictor training a support vector machine model through a mutual information filter-wrapper parallel feature selection algorithm and an iterative and hierarchical clustering to select a relevance negative training set. By means of a selected suboptimum set of features, the constructed support vector machine model is able to classify PPIs with high accuracy in any positive and negative datasets

    Recovering star formation histories: Integrated-light analyses vs stellar colour-magnitude diagrams

    Full text link
    Accurate star formation histories (SFHs) of galaxies are fundamental for understanding the build-up of their stellar content. However, the most accurate SFHs - those obtained from colour-magnitude diagrams (CMDs) of resolved stars reaching the oldest main sequence turnoffs (oMSTO) - are presently limited to a few systems in the Local Group. It is therefore crucial to determine the reliability and range of applicability of SFHs derived from integrated light spectroscopy, as this affects our understanding of unresolved galaxies from low to high redshift. To evaluate the reliability of current full spectral fitting techniques in deriving SFHs from integrated light spectroscopy by comparing SFHs from integrated spectra to those obtained from deep CMDs of resolved stars. We have obtained a high signal--to--noise (S/N \sim 36.3 per \AA) integrated spectrum of a field in the bar of the Large Magellanic Cloud (LMC) using EFOSC2 at the 3.6 meter telescope at La Silla Observatory. For this same field, resolved stellar data reaching the oMSTO are available. We have compared the star formation rate (SFR) as a function of time and the age-metallicity relation (AMR) obtained from the integrated spectrum using {\tt STECKMAP}, and the CMD using the IAC-star/MinnIAC/IAC-pop set of routines. For the sake of completeness we also use and discuss other synthesis codes ({\tt STARLIGHT} and {\tt ULySS}) to derive the SFR and AMR from the integrated LMC spectrum. We find very good agreement (average differences \sim 4.1 %\%) between the SFR(t) and the AMR obtained using {\tt STECKMAP} on the integrated light spectrum, and the CMD analysis. {\tt STECKMAP} minimizes the impact of the age-metallicity degeneracy and has the advantage of preferring smooth solutions to recover complex SFHs by means of a penalized χ2\chi^2. [abridged]Comment: 23 pages, 24 figures. Accepted for publication in A&A (6 Sep 2015

    Inflation-Produced Magnetic Fields in Nonlinear Electrodynamics

    Full text link
    We study the generation of primeval magnetic fields during inflation era in nonlinear theories of electrodynamics. Although the intensity of the produced fields strongly depends on characteristics of inflation and on the form of electromagnetic Lagrangian, our results do not exclude the possibility that these fields could be astrophysically interesting.Comment: 6 page

    Predicting the accuracy of multiple sequence alignment algorithms by using computational intelligent techniques

    Get PDF
    Multiple sequence alignments (MSAs) have become one of the most studied approaches in bioinformatics to perform other outstanding tasks such as structure prediction, biological function analysis or next-generation sequencing. However, current MSA algorithms do not always provide consistent solutions, since alignments become increasingly difficult when dealing with low similarity sequences. As widely known, these algorithms directly depend on specific features of the sequences, causing relevant influence on the alignment accuracy. Many MSA tools have been recently designed but it is not possible to know in advance which one is the most suitable for a particular set of sequences. In this work, we analyze some of the most used algorithms presented in the bibliography and their dependences on several features. A novel intelligent algorithm based on least square support vector machine is then developed to predict how accurate each alignment could be, depending on its analyzed features. This algorithm is performed with a dataset of 2180 MSAs. The proposed system first estimates the accuracy of possible alignments. The most promising methodologies are then selected in order to align each set of sequences. Since only one selected algorithm is run, the computational time is not excessively increased
    corecore