23 research outputs found

    New Insights on the Emerging Genomic Landscape of CXCR4 in Cancer: A Lesson from WHIM

    Get PDF
    Deciphering the molecular alterations leading to disease initiation and progression is currently crucial to identify the most relevant targets for precision therapy in cancer patients. Cancers express a complex chemokine network influencing leucocyte infiltration and angiogenesis. Moreover, malignant cells also express a selective repertoire of chemokine receptors that sustain their growth and spread. At present, different cancer types have been shown to overexpress C-X-C chemokine receptor type 4 (CXCR4) and to respond to its ligand C-X-C motif chemokine 12 (CXCL12). The CXCL12/CXCR4 axis influences cancer biology, promoting survival, proliferation, and angiogenesis, and plays a pivotal role in directing migration of cancer cells to sites of metastases, making it a prognostic marker and a therapeutic target. More recently, mutations in the C-terminus of CXCR4 have been identified in the genomic landscape of patients affected by Waldenstrom's macroglobulinemia, a rare B cell neoplasm. These mutations closely resemble those occurring in Warts, Hypogammaglobulinemia, Immunodeficiency, and Myelokathexis (WHIM) syndrome, an immunodeficiency associated with CXCR4 aberrant expression and activity and with chemotherapy resistance in clinical trials. In this review, we summarize the current knowledge on the relevance of CXCR4 mutations in cancer biology, focusing on its importance as predictors of clinical presentation and response to therapy

    Impact of the Donor KIR Genotype on the Clinical Outcome of Hematopoietic Stem Cell Unrelated Transplants: A Single Center Experience

    Get PDF
    In recent years, the anti-leukemic potential of Natural Killer (NK) cells and their role in hematologic malignancies and in Hematopoietic Stem Cell Transplants (HSCT) has attracted greater interest and a recent study by Cooley S. et al. showed a better clinical outcome when patients with Acute Myeloid Leukemia received a transplant from unrelated Group B KIR haplotypes donors. As a consequence of these results, an algorithm called “KIR B-content score” was formulated. The aim of our research is a retrospective analysis of HSC unrelated transplants performed in our center to analyze the effect of the donor KIR B status on the clinical-outcome. Our results showed a better overall survival-rate in the AML recipients, HLA mismatched with the donor, when the donor KIR B content status is Best/Better (37% vs 18% at three years P=0,028). Moreover, we observed that AML recipients, whose Donors KIR B status was Best/Better, had more incidence of aGvHD grade I and II than patients whose Donors KIR B status was Neutral (70% vs 26%) and also a lower rate of relapse (36% vs 58%) and a better Disease Free Survival-rate (58% vs 38% at three years P=0,1) because of a better GvL effect

    MiR-320a as a Potential Novel Circulating Biomarker of Arrhythmogenic CardioMyopathy

    Get PDF
    Diagnosis of Arrhythmogenic CardioMyopathy (ACM) is challenging and often late after disease onset. No circulating biomarkers are available to date. Given their involvement in several cardiovascular diseases, plasma microRNAs warranted investigation as potential non-invasive diagnostic tools in ACM. We sought to identify circulating microRNAs differentially expressed in ACM with respect to Healthy Controls (HC) and Idiopathic Ventricular Tachycardia patients (IVT), often in differential diagnosis. ACM and HC subjects were screened for plasmatic expression of 377 microRNAs and validation was performed in 36 ACM, 53 HC, 21 IVT. Variable importance in data partition was estimated through Random Forest analysis and accuracy by Receiver Operating Curves. Plasmatic miR-320a showed 0.53\u2009\ub1\u20090.04 fold expression difference in ACM vs. HC (p\u2009<\u20090.01). A similar trend was observed when comparing ACM (n\u2009=\u200913) and HC (n\u2009=\u200917) with athletic lifestyle, a ACM precipitating factor. Importantly, ACM patients miR-320a showed 0.78\u2009\ub1\u20090.05 fold expression change vs. IVT (p\u2009=\u20090.03). When compared to non-invasive ACM diagnostic parameters, miR-320a ranked highly in discriminating ACM vs. IVT and it increased their accuracy. Finally, miR-320a expression did not correlate with ACM severity. Our data suggest that miR-320a may be considered a novel potential biomarker of ACM, specifically useful in ACM vs. IVT differentiation

    High Risk of Secondary Infections Following Thrombotic Complications in Patients With COVID-19

    Get PDF
    Background. This study’s primary aim was to evaluate the impact of thrombotic complications on the development of secondary infections. The secondary aim was to compare the etiology of secondary infections in patients with and without thrombotic complications. Methods. This was a cohort study (NCT04318366) of coronavirus disease 2019 (COVID-19) patients hospitalized at IRCCS San Raffaele Hospital between February 25 and June 30, 2020. Incidence rates (IRs) were calculated by univariable Poisson regression as the number of cases per 1000 person-days of follow-up (PDFU) with 95% confidence intervals. The cumulative incidence functions of secondary infections according to thrombotic complications were compared with Gray’s method accounting for competing risk of death. A multivariable Fine-Gray model was applied to assess factors associated with risk of secondary infections. Results. Overall, 109/904 patients had 176 secondary infections (IR, 10.0; 95% CI, 8.8–11.5; per 1000-PDFU). The IRs of secondary infections among patients with or without thrombotic complications were 15.0 (95% CI, 10.7–21.0) and 9.3 (95% CI, 7.9–11.0) per 1000-PDFU, respectively (P = .017). At multivariable analysis, thrombotic complications were associated with the development of secondary infections (subdistribution hazard ratio, 1.788; 95% CI, 1.018–3.140; P = .043). The etiology of secondary infections was similar in patients with and without thrombotic complications. Conclusions. In patients with COVID-19, thrombotic complications were associated with a high risk of secondary infections

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    MicroRNA-26a/cyclin-dependent kinase 5 axis controls proliferation, apoptosis and in vivo tumor growth of diffuse large B-cell lymphoma cell lines

    No full text
    Diffuse large B-cell lymphoma (DLBCL) is the most frequent type of non-Hodgkin lymphoma. Despite a favorable therapeutic response to first-line chemo-immunotherapy, still 30-40% of patients is refractory, or relapse after this treatment. Thus, alternative strategies must be sought. Previous studies have indicated that cyclin-dependent kinase 5 (CDK5), a serine/threonine protein kinase, is involved in tumor development and progression, and it may represent a potential therapeutic target. However, its role in modulating DLBCL growth and progression remains largely unexplored. In this study, we show that CDK5 and its activator, cyclin-dependent kinase 5 activator 1 (CDK5R1 or p35), are overexpressed in DLBCL cell lines and that signal transducer and activator of transcription 3 (STAT3) phosphorylation and activity is dependent on CDK5 expression in DLBCL. Using public data sets, we also demonstrate that patients with DLBCL show a higher expression of CDK5 compared with healthy individuals. By using loss-of-function approaches, we demonstrate that CDK5's activity regulates proliferation and survival of DLBCL cells. MicroRNAs (miRNAs or miRs) are small noncoding RNAs that negatively regulating gene expression and are involved in cancer initiation and progression. We identify miR-26a as direct regulator of p35 expression and CDK5 activity. We show that miR-26a expression is lower in DLBCL cell lines compared to B lymphocytes and that its ectopic expression leads to a drastic reduction of DLBCL tumor growth in vivo and decreased proliferation, cell-cycle progression, and survival in vitro. Remarkably, concomitant overexpression of a 3'-UTR-truncated form of p35 promoted tumor growth in vivo and cell proliferation, cell-cycle progression, and cell survival in vitro. In conclusion, these results demonstrate an important role for miR-26a and CDK5 together in the survival and growth of DLBCL cells, suggesting the existence of potential novel therapeutic targets for the treatment of DLBCL
    corecore