163 research outputs found
Open reduction and internal fixation versus casting for highly comminuted and intra-articular fractures of the distal radius (ORCHID): protocol for a randomized clinical multi-center trial
<p>Abstract</p> <p>Background</p> <p>Fractures of the distal radius represent the most common fracture in elderly patients, and often indicate the onset of symptomatic osteoporosis. A variety of treatment options is available, including closed reduction and plaster casting, K-wire-stabilization, external fixation and open reduction and internal fixation (ORIF) with volar locked plating. The latter is widely promoted by clinicians and hardware manufacturers. Closed reduction and cast stabilization for six weeks is a simple, convenient, and ubiquitously available intervention. In contrast, ORIF requires hospitalization, but allows for functional rehabilitation.</p> <p>Given the lack of randomized controlled trials, it remains unclear whether ORIF leads to better functional outcomes one year after injury than closed reduction and casting.</p> <p>Methods/Design</p> <p>ORCHID (Open reduction and internal fixation versus casting for highly comminuted intra-articular fractures of the distal radius) is a pragmatic, randomized, multi-center, clinical trial with two parallel treatment arms. It is planned to include 504 patients in 15 participating centers throughout Germany over a three-year period. Patients are allocated by a central web-based randomization tool.</p> <p>The primary objective is to determine differences in the Short Form 36 (SF-36) Physical Component Score (PCS) between volar locked plating and closed reduction and casting of intraarticular, comminuted distal radius fractures in patients > 65 years of age one year after the fracture. Secondary outcomes include differences in other SF-36 dimensions, the EuroQol-5D questionnaire, the Disability of the Arm, Shoulder, and Hand (DASH) instrument. Also, the range of motion in the affected wrist, activities of daily living, complications (including secondary ORIF and revision surgery), as well as serious adverse events will be assessed. Data obtained during the trial will be used for later health-economic evaluations. The trial architecture involves a central statistical unit, an independent monitoring institute, and a data safety monitoring board. Following approval by the institutional review boards of all participating centers, conduct and reporting will strictly adhere to national and international rules, regulations, and recommendations (e.g., Good Clinical Practice, data safety laws, and EQUATOR/CONSORT proposals)</p> <p>Discussion</p> <p>To our knowledge, ORCHID is the first multicenter RCT designed to assess quality of life and functional outcomes following operative treatment compared to conservative treatment of complex, intra-articular fractures of the distal radius in elderly patients. The results are expected to influence future treatment recommendations and policies on an international level.</p> <p>Trial registration</p> <p>ISRCTN: <a href="http://www.controlled-trials.com/ISRCTN76120052">ISRCTN76120052</a></p> <p>Registration date: 31.07.2008; Randomization of first patient: 15.09.2008</p
Hsp70 Oligomerization Is Mediated by an Interaction between the Interdomain Linker and the Substrate-Binding Domain
Oligomerization in the heat shock protein (Hsp) 70 family has been extensively documented both in vitro and in vivo, although the mechanism, the identity of the specific protein regions involved and the physiological relevance of this process are still unclear. We have studied the oligomeric properties of a series of human Hsp70 variants by means of nanoelectrospray ionization mass spectrometry, optical spectroscopy and quantitative size exclusion chromatography. Our results show that Hsp70 oligomerization takes place through a specific interaction between the interdomain linker of one molecule and the substrate-binding domain of a different molecule, generating dimers and higher-order oligomers. We have found that substrate binding shifts the oligomerization equilibrium towards the accumulation of functional monomeric protein, probably by sequestering the helical lid sub-domain needed to stabilize the chaperone: substrate complex. Taken together, these findings suggest a possible role of chaperone oligomerization as a mechanism for regulating the availability of the active monomeric form of the chaperone and for the control of substrate binding and release. © 2013 Aprile et al.FAA was recipient of a graduate fellowship from the Italian Ministry of Education, University and Research. AD is grateful for support from Murray
Edwards College, Cambridge, through a Junior Research Fellowship. FS is a Sir Henry Wellcome Fellow. CR acknowledges financial support by the
Spanish Ministry of Health according to the 'Plan Nacional de I+D+I 2008-2011', through ISCIII with cofunding by FEDER (CP10/00527). JLPB is a Royal
Society University Research Fellow. FAA and PT are grateful for support from Regione Lombardia (NEDD and >Network Tecnologico integrato per lo studio
proteomico e trascrittomico di malattie neurodegenerative correlate a deposizioni di amiloidi>). CMD acknowledges support from BBSRC (BB/E019927/1),
the Wellcome Trust (094425/Z/10/Z), the European Commission (project LSHM-CT-2006-037525). NC acknowledges support from Human Frontiers
Science Program (HFSP) through a Long-term Fellowship (LT000795/2009).Peer Reviewe
Non-canonical BIM-regulated energy metabolism determines drug-induced liver necrosis.
Paracetamol (acetaminophen, APAP) overdose severely damages mitochondria and triggers several apoptotic processes in hepatocytes, but the final outcome is fulminant necrotic cell death, resulting in acute liver failure and mortality. Here, we studied this switch of cell death modes and demonstrate a non-canonical role of the apoptosis-regulating BCL-2 homolog BIM/Bcl2l11 in promoting necrosis by regulating cellular bioenergetics. BIM deficiency enhanced total ATP production and shifted the bioenergetic profile towards glycolysis, resulting in persistent protection from APAP-induced liver injury. Modulation of glucose levels and deletion of Mitofusins confirmed that severe APAP toxicity occurs only in cells dependent on oxidative phosphorylation. Glycolytic hepatocytes maintained elevated ATP levels and reduced ROS, which enabled lysosomal recycling of damaged mitochondria by mitophagy. The present study highlights how metabolism and bioenergetics affect drug-induced liver toxicity, and identifies BIM as important regulator of glycolysis, mitochondrial respiration, and oxidative stress signaling
Molecular Architecture of the 40Sâ‹…eIF1â‹…eIF3 Translation Initiation Complex
Eukaryotic translation initiation requires the recruitment of the large, multiprotein eIF3 complex to the 40S ribosomal subunit. Using X-ray structures of all major components of the minimal, six-subunit Saccharomyces cerevisiae eIF3 core, together with cross-linking coupled to mass spectrometry, we were able to use IMP to position and orient all eIF3 components on the 40S•eIF1 complex, revealing an extended, modular arrangement of eIF3 subunits.
For more information about how to reproduce this modeling, see https://salilab.org/40S-eIF1-eIF3 or the README file
DNA methyltransferase 3A controls intestinal epithelial barrier function and regeneration in the colon
Genetic variants in the DNA methyltransferase 3 A (DNMT3A) locus have been associated with inflammatory bowel disease (IBD). DNMT3A is part of the epigenetic machinery physiologically involved in DNA methylation. We show that DNMT3A plays a critical role in maintaining intestinal homeostasis and gut barrier function. DNMT3A expression is downregulated in intestinal epithelial cells from IBD patients and upon tumor necrosis factor treatment in murine intestinal organoids. Ablation of DNMT3A in Caco-2 cells results in global DNA hypomethylation, which is linked to impaired regenerative capacity, transepithelial resistance and intercellular junction formation. Genetic deletion of Dnmt3a in intestinal epithelial cells (Dnmt3aΔIEC) in mice confirms the phenotype of an altered epithelial ultrastructure with shortened apical-junctional complexes, reduced Goblet cell numbers and increased intestinal permeability in the colon in vivo. Dnmt3aΔIEC mice suffer from increased susceptibility to experimental colitis, characterized by reduced epithelial regeneration. These data demonstrate a critical role for DNMT3A in orchestrating intestinal epithelial homeostasis and response to tissue damage and suggest an involvement of impaired epithelial DNMT3A function in the etiology of IBD
ATG16L1 orchestrates interleukin-22 signaling in the intestinal epithelium via cGAS-STING.
A coding variant of the inflammatory bowel disease (IBD) risk gene ATG16L1 has been associated with defective autophagy and deregulation of endoplasmic reticulum (ER) function. IL-22 is a barrier protective cytokine by inducing regeneration and antimicrobial responses in the intestinal mucosa. We show that ATG16L1 critically orchestrates IL-22 signaling in the intestinal epithelium. IL-22 stimulation physiologically leads to transient ER stress and subsequent activation of STING-dependent type I interferon (IFN-I) signaling, which is augmented in Atg16l1 ΔIEC intestinal organoids. IFN-I signals amplify epithelial TNF production downstream of IL-22 and contribute to necroptotic cell death. In vivo, IL-22 treatment in Atg16l1 ΔIEC and Atg16l1 ΔIEC/Xbp1 ΔIEC mice potentiates endogenous ileal inflammation and causes widespread necroptotic epithelial cell death. Therapeutic blockade of IFN-I signaling ameliorates IL-22-induced ileal inflammation in Atg16l1 ΔIEC mice. Our data demonstrate an unexpected role of ATG16L1 in coordinating the outcome of IL-22 signaling in the intestinal epithelium
Structural and kinetic analysis of the COP9-Signalosome activation and the cullin-RING ubiquitin ligase deneddylation cycle
The COP9-Signalosome (CSN) regulates cullin–RING ubiquitin ligase (CRL) activity and assembly by cleaving Nedd8 from cullins. Free CSN is autoinhibited, and it remains unclear how it becomes activated. We combine structural and kinetic analyses to identify mechanisms that contribute to CSN activation and Nedd8 deconjugation. Both CSN and neddylated substrate undergo large conformational changes upon binding, with important roles played by the N-terminal domains of Csn2 and Csn4 and the RING domain of Rbx1 in enabling formation of a high affinity, fully active complex. The RING domain is crucial for deneddylation, and works in part through conformational changes involving insert-2 of Csn6. Nedd8 deconjugation and re-engagement of the active site zinc by the autoinhibitory Csn5 glutamate-104 diminish affinity for Cul1/Rbx1 by ~100-fold, resulting in its rapid ejection from the active site. Together, these mechanisms enable a dynamic deneddylation-disassembly cycle that promotes rapid remodeling of the cellular CRL network
Position statement and updated international guideline for safe and effective whole-body electromyostimulation training-the need for common sense in WB-EMS application
Whole-Body Electromyostimulation (WB-EMS) is a training technology that enables simultaneous stimulation of all the main muscle groups with a specific impulse intensity for each electrode. The corresponding time-efficiency and joint-friendliness of WB-EMS may be particularly attractive for people unable or unmotivated to conduct (intense) conventional training protocols. However, due to the enormous metabolic and musculoskeletal impact of WB-EMS, particular attention must be paid to the application of this technology. In the past, several scientific and newspaper articles reported severe adverse effects of WB-EMS. To increase the safety of commercial non-medical WB-EMS application, recommendations “for safe and effective whole-body electromyostimulation” were launched in 2016. However, new developments and trends require an update of these recommendations to incorporate more international expertise with demonstrated experience in the application of WB-EMS. The new version of these consensus-based recommendations has been structured into 1) “general aspects of WB-EMS”, 2) “preparation for training”, recommendations for the 3) “WB-EMS application” itself and 4) “safety aspects during and after training”. Key topics particularly addressed are 1) consistent and close supervision of WB-EMS application, 2) mandatory qualification of WB-EMS trainers, 3) anamnesis and corresponding consideration of contraindications prior to WB-EMS, 4) the participant’s proper preparation for the session, 5) careful preparation of the WB-EMS novice, 6) appropriate regeneration periods between WB-EMS sessions and 7) continuous interaction between trainer and participant at a close physical distance. In summary, we are convinced that the present guideline will contribute to greater safety and effectiveness in the area of non-medical commercial WB-EMS application
Estimated Glomerular Filtration Rate, Albuminuria, and Adverse Outcomes. An Individual-Participant Data Meta-Analysis
IMPORTANCE: Chronic kidney disease (low estimated glomerular filtration rate [eGFR] or albuminuria) affects approximately 14% of adults in the US. OBJECTIVE: To evaluate associations of lower eGFR based on creatinine alone, lower eGFR based on creatinine combined with cystatin C, and more severe albuminuria with adverse kidney outcomes, cardiovascular outcomes, and other health outcomes. DESIGN, SETTING, AND PARTICIPANTS: Individual-participant data meta-analysis of 27 503 140 individuals from 114 global cohorts (eGFR based on creatinine alone) and 720 736 individuals from 20 cohorts (eGFR based on creatinine and cystatin C) and 9 067 753 individuals from 114 cohorts (albuminuria) from 1980 to 2021. EXPOSURES: The Chronic Kidney Disease Epidemiology Collaboration 2021 equations for eGFR based on creatinine alone and eGFR based on creatinine and cystatin C; and albuminuria estimated as urine albumin to creatinine ratio (UACR). MAIN OUTCOMES AND MEASURES: The risk of kidney failure requiring replacement therapy, all-cause mortality, cardiovascular mortality, acute kidney injury, any hospitalization, coronary heart disease, stroke, heart failure, atrial fibrillation, and peripheral artery disease. The analyses were performed within each cohort and summarized with random-effects meta-analyses. RESULTS: Within the population using eGFR based on creatinine alone (mean age, 54 years [SD, 17 years]; 51% were women; mean follow-up time, 4.8 years [SD, 3.3 years]), the mean eGFR was 90 mL/min/1.73 m2 (SD, 22 mL/min/1.73 m2) and the median UACR was 11 mg/g (IQR, 8-16 mg/g). Within the population using eGFR based on creatinine and cystatin C (mean age, 59 years [SD, 12 years]; 53% were women; mean follow-up time, 10.8 years [SD, 4.1 years]), the mean eGFR was 88 mL/min/1.73 m2 (SD, 22 mL/min/1.73 m2) and the median UACR was 9 mg/g (IQR, 6-18 mg/g). Lower eGFR (whether based on creatinine alone or based on creatinine and cystatin C) and higher UACR were each significantly associated with higher risk for each of the 10 adverse outcomes, including those in the mildest categories of chronic kidney disease. For example, among people with a UACR less than 10 mg/g, an eGFR of 45 to 59 mL/min/1.73 m2 based on creatinine alone was associated with significantly higher hospitalization rates compared with an eGFR of 90 to 104 mL/min/1.73 m2 (adjusted hazard ratio, 1.3 [95% CI, 1.2-1.3]; 161 vs 79 events per 1000 person-years; excess absolute risk, 22 events per 1000 person-years [95% CI, 19-25 events per 1000 person-years]). CONCLUSIONS AND RELEVANCE: In this retrospective analysis of 114 cohorts, lower eGFR based on creatinine alone, lower eGFR based on creatinine and cystatin C, and more severe UACR were each associated with increased rates of 10 adverse outcomes, including adverse kidney outcomes, cardiovascular diseases, and hospitalizations
- …