180 research outputs found

    A Phase I/II Study of a 72-h Continuous Infusion of Etoposide in Advanced Soft Tissue Sarcoma

    Get PDF
    Purpose. The study was performed to assess the antitumour activity and toxicity of a 72-h continuous infusion of single-agent etoposide as second-line treatment for patients with locally advanced or metastatic soft tissue sarcoma (STS), following reports of substantial activity using this schedule of etoposide administration as first-line treatment in combination with ifosfamide

    Machine learning estimation of human body time using metabolomic profiling

    Get PDF
    This work was supported in part by the Netherlands Forensic Institute, Netherlands Genomics Initiative/Netherlands Organization for Scientific Research within the framework of the Forensic Genomics Consortium Netherlands, the 6th Framework project EUCLOCK (018741), and UK Biotechnology and Biological Sciences Research Council Grant BB/I019405/1. Additional funding was received from the Cancer Research UK Cancer Therapeutics Unit award (Ref: C2739/A22897) and a Cancer Therapeutics Centre award (Ref: C309/A25144 to FR), the NWO-STW Perspective Program grant ‘OnTime’ (project 12185 to TW and RAH).Circadian rhythms influence physiology, metabolism, and molecular processes in the human body. Estimation of individual body time (circadian phase) is therefore highly relevant for individual optimization of behavior (sleep, meals, sports), diagnostic sampling, medical treatment, and for treatment of circadian rhythm disorders. Here, we provide a partial least squares regression (PLSR) machine learning approach that uses plasma-derived metabolomics data in one or more samples to estimate dim light melatonin onset (DLMO) as a proxy for circadian phase of the human body. For this purpose, our protocol was aimed to stay close to real-life conditions. We found that a metabolomics approach optimized for either women or men under entrained conditions performed equally well or better than existing approaches using more labor-intensive RNA sequencing-based methods. Although estimation of circadian body time using blood-targeted metabolomics requires further validation in shift work and other real-world conditions, it currently may offer a robust, feasible technique with relatively high accuracy to aid personalized optimization of behavior and clinical treatment after appropriate validation in patient populations.Publisher PDFPeer reviewe

    Investigation of metabolites for estimating blood deposition time

    Get PDF
    This study was supported by a UK Biotechnology and Biological Sciences Research Council (BBSRC) Grant (BB/I019405/1) to DJS, grant 727.011.001 from the Netherlands Organization for Scientific Research (NWO) Forensic Science Program to MK and by Erasmus MC University Medical Centre Rotterdam. DJS is a Royal Society Wolfson Research Merit Award holder. RAH and IH were funded by the Dutch applied research foundation (STW Perspectief Program ‘OnTime’ project 12185).Trace deposition timing reflects a novel concept in forensic molecular biology involving the use of rhythmic biomarkers for estimating the time within a 24-h day/night cycle a human biological sample was left at the crime scene, which in principle allows verifying a sample donor’s alibi. Previously, we introduced two circadian hormones for trace deposition timing and recently demonstrated that messenger RNA (mRNA) biomarkers significantly improve time prediction accuracy. Here, we investigate the suitability of metabolites measured using a targeted metabolomics approach, for trace deposition timing. Analysis of 171 plasma metabolites collected around the clock at 2-h intervals for 36 h from 12 male participants under controlled laboratory conditions identified 56 metabolites showing statistically significant oscillations, with peak times falling into three day/night time categories: morning/noon, afternoon/evening and night/early morning. Time prediction modelling identified 10 independently contributing metabolite biomarkers, which together achieved prediction accuracies expressed as AUC of 0.81, 0.86 and 0.90 for these three time categories respectively. Combining metabolites with previously established hormone and mRNA biomarkers in time prediction modelling resulted in an improved prediction accuracy reaching AUCs of 0.85, 0.89 and 0.96 respectively. The additional impact of metabolite biomarkers, however, was rather minor as the previously established model with melatonin, cortisol and three mRNA biomarkers achieved AUC values of 0.88, 0.88 and 0.95 for the same three time categories respectively. Nevertheless, the selected metabolites could become practically useful in scenarios where RNA marker information is unavailable such as due to RNA degradation. This is the first metabolomics study investigating circulating metabolites for trace deposition timing, and more work is needed to fully establish their usefulness for this forensic purpose.Publisher PDFPeer reviewe

    Metabolomic changes of the multi (-AGC-) kinase inhibitor AT13148 in cells, mice and patients are associated with NOS regulation

    Get PDF
    introduction: To generate biomarkers of target engagement or predictive response for multi-target drugs is challenging. One such compound is the multi-AGC kinase inhibitor AT13148. Metabolic signatures of selective signal transduction inhibitors identified in preclinical models have previously been confirmed in early clinical studies. This study explores whether metabolic signatures could be used as biomarkers for the multi-AGC kinase inhibitor AT13148.Objectives: To identify metabolomic changes of biomarkers of multi-AGC kinase inhibitor AT13148 in cells, xenograft / mouse models and in patients in a Phase I clinical study.Methods: HILIC LC–MS/MS methods and Biocrates AbsoluteIDQℱ p180 kit were used for targeted metabolomics; followed by multivariate data analysis in SIMCA and statistical analysis in Graphpad. Metaboanalyst and String were used for network analysis.Results: BT474 and PC3 cells treated with AT13148 affected metabolites which are in a gene protein metabolite network associated with Nitric oxide synthases (NOS). In mice bearing the human tumour xenografts BT474 and PC3, AT13148 treatment did not produce a common robust tumour specific metabolite change. However, AT13148 treatment of non-tumour bearing mice revealed 45 metabolites that were different from non-treated mice. These changes were also observed in patients at doses where biomarker modulation was observed. Further network analysis of these metabolites indicated enrichment for genes associated with the NOS pathway. The impact of AT13148 on the metabolite changes and the involvement of NOS-AT13148- Asymmetric dimethylarginine (ADMA) interaction were consistent with hypotension observed in patients in higher dose cohorts (160-300 mg).Conclusion: AT13148 affects metabolites associated with NOS in cells, mice and patients which is consistent with the clinical dose-limiting hypotension

    Combined MYC and P53 defects emerge at medulloblastoma relapse and define rapidly progressive, therapeutically targetable disease

    Get PDF
    We undertook a comprehensive clinical and biological investigation of serial medulloblastoma biopsies obtained at diagnosis and relapse. CombinedMYCfamily amplifications and P53 pathway defects commonly emerged at relapse, and all patients in this group died of rapidly progressive disease postrelapse. To study this interaction, we investigated a transgenic model of MYCN-driven medulloblastoma and found spontaneous development ofTrp53inactivating mutations. Abrogation of p53 function in this model produced aggressive tumors that mimicked characteristics of relapsed human tumors with combined P53-MYC dysfunction. Restoration of p53 activity and genetic and therapeutic suppression of MYCN all reduced tumor growth and prolonged survival. Our findings identify P53-MYC interactions at medulloblastoma relapse as biomarkers of clinically aggressive disease that may be targeted therapeutically.Additional co-authors: Louise Howell, Colin Kwok, Abhijit Joshi, Sarah Leigh Nicholson, Stephen Crosier, David W. Ellison, Stephen B. Wharton, Keith Robson, Antony Michalski, Darren Hargrave, Thomas S. Jacques, Barry Pizer, Simon Bailey, Fredrik J. Swartling, William A. Weiss, Louis Chesler, Steven C. Cliffor

    Structure-based optimization of potent, selective, and orally bioavailable CDK8 inhibitors discovered by high-throughput screening

    Get PDF
    The mediator complex-associated cyclin dependent kinase CDK8 regulates beta-catenin-dependent transcription following activation of WNT signaling. Multiple lines of evidence suggest CDK8 may act as an oncogene in the development of colorectal cancer. Here we describe the successful optimization of an imidazo-thiadiazole series of CDK8 inhibitors that was identified in a high-throughput screening campaign and further progressed by structure-based design. In several optimization cycles, we improved the microsomal stability, potency, and kinase selectivity. The initial imidazo-thiadiazole scaffold was replaced by a 3-methyl-1H-pyrazolo[3,4-b]-pyridine which resulted in compound 25 (MSC2530818) that displayed excellent kinase selectivity, biochemical and cellular potency, microsomal stability, and is orally bioavailable. Furthermore, we demonstrated modulation phospho-STAT1, a pharmacodynamic biomarker of CDK8 activity, and tumor growth inhibition in an APC mutant SW620 human colorectal carcinoma xenograft model after oral administration. Compound 25 demonstrated suitable potency and selectivity to progress into preclinical in vivo efficacy and safety studies

    Plasma Metabolomic Changes following PI3K Inhibition as Pharmacodynamic Biomarkers: Preclinical Discovery to Phase I Trial Evaluation.

    Get PDF
    PI3K plays a key role in cellular metabolism and cancer. Using a mass spectrometry-based metabolomics platform, we discovered that plasma concentrations of 26 metabolites, including amino acids, acylcarnitines, and phosphatidylcholines, were decreased in mice bearing PTEN-deficient tumors compared with non-tumor-bearing controls and in addition were increased following dosing with class I PI3K inhibitor pictilisib (GDC-0941). These candidate metabolomics biomarkers were evaluated in a phase I dose-escalation clinical trial of pictilisib. Time- and dose-dependent effects were observed in patients for 22 plasma metabolites. The changes exceeded baseline variability, resolved after drug washout, and were recapitulated on continuous dosing. Our study provides a link between modulation of the PI3K pathway and changes in the plasma metabolome and demonstrates that plasma metabolomics is a feasible and promising strategy for biomarker evaluation. Also, our findings provide additional support for an association between insulin resistance, branched-chain amino acids, and related metabolites following PI3K inhibition. Mol Cancer Ther; 15(6); 1412-24. ©2016 AACR.The Institute of Cancer ResearchThis is the author accepted manuscript. The final version is available from the American Association for Cancer Research via http://dx.doi.org/10.1158/1535-7163.MCT-15-081

    2,8-Disubstituted-1,6-Naphthyridines and 4,6-Disubstituted-Isoquinolines with Potent, Selective Affinity for CDK8/19

    Get PDF
    We demonstrate a designed scaffold-hop approach to the discovery of 2,8-disubstituted-1,6-naphthyridine- and 4,6-disubstituted-isoquinoline-based dual CDK8/19 ligands. Optimized compounds in both series exhibited rapid aldehyde oxidase-mediated metabolism, which could be abrogated by introduction of an amino substituent at C5 of the 1,6-naphthyridine scaffold or at C1 of the isoquinoline scaffold. Compounds 51 and 59 were progressed to in vivo pharmacokinetic studies, and 51 also demonstrated sustained inhibition of STAT1SER727 phosphorylation, a biomarker of CDK8 inhibition, in an SW620 colorectal carcinoma human tumor xenograft model following oral dosing

    First-in-human phase I study of pictilisib (GDC-0941), a potent pan-class I phosphatidylinositol-3-kinase (PI3K) inhibitor, in patients with advanced solid tumors.

    Get PDF
    PURPOSE: This first-in-human dose-escalation trial evaluated the safety, tolerability, maximal-tolerated dose (MTD), dose-limiting toxicities (DLT), pharmacokinetics, pharmacodynamics, and preliminary clinical activity of pictilisib (GDC-0941), an oral, potent, and selective inhibitor of the class I phosphatidylinositol-3-kinases (PI3K). PATIENTS AND METHODS: Sixty patients with solid tumors received pictilisib at 14 dose levels from 15 to 450 mg once-daily, initially on days 1 to 21 every 28 days and later, using continuous dosing for selected dose levels. Pharmacodynamic studies incorporated (18)F-FDG-PET, and assessment of phosphorylated AKT and S6 ribosomal protein in platelet-rich plasma (PRP) and tumor tissue. RESULTS: Pictilisib was well tolerated. The most common toxicities were grade 1-2 nausea, rash, and fatigue, whereas the DLT was grade 3 maculopapular rash (450 mg, 2 of 3 patients; 330 mg, 1 of 7 patients). The pharmacokinetic profile was dose-proportional and supported once-daily dosing. Levels of phosphorylated serine-473 AKT were suppressed >90% in PRP at 3 hours after dose at the MTD and in tumor at pictilisib doses associated with AUC >20 h·Όmol/L. Significant increase in plasma insulin and glucose levels, and >25% decrease in (18)F-FDG uptake by PET in 7 of 32 evaluable patients confirmed target modulation. A patient with V600E BRAF-mutant melanoma and another with platinum-refractory epithelial ovarian cancer exhibiting PTEN loss and PIK3CA amplification demonstrated partial response by RECIST and GCIG-CA125 criteria, respectively. CONCLUSION: Pictilisib was safely administered with a dose-proportional pharmacokinetic profile, on-target pharmacodynamic activity at dose levels ≄100 mg and signs of antitumor activity. The recommended phase II dose was continuous dosing at 330 mg once-daily.This study was supported by Genentech Inc. The Drug Development Unit, The Royal Marsden NHS Foundation Trust, and The Institute of Cancer Research (London) is supported in part by programme grants from Cancer Research UK. Support was also provided by Experimental Cancer Medicine Center grants (to The Institute of Cancer Research and the Cancer Research UK Center), the National Institute for Health Research Biomedical Research Center (jointly to The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research) and the Wellcome Trust (grant 090952/Z/09/Z to Dr. Ang). Paul Workman is a Cancer Research UK Life Fellow.Originally published by the American Association for Cancer Research in Clinical Cancer Research January 1, 2015 21; 77 http://dx.doi.org/10.1158/1078-0432.CCR-14-094
    • 

    corecore