185 research outputs found

    Investigating the topology of interacting networks - Theory and application to coupled climate subnetworks

    Full text link
    Network theory provides various tools for investigating the structural or functional topology of many complex systems found in nature, technology and society. Nevertheless, it has recently been realised that a considerable number of systems of interest should be treated, more appropriately, as interacting networks or networks of networks. Here we introduce a novel graph-theoretical framework for studying the interaction structure between subnetworks embedded within a complex network of networks. This framework allows us to quantify the structural role of single vertices or whole subnetworks with respect to the interaction of a pair of subnetworks on local, mesoscopic and global topological scales. Climate networks have recently been shown to be a powerful tool for the analysis of climatological data. Applying the general framework for studying interacting networks, we introduce coupled climate subnetworks to represent and investigate the topology of statistical relationships between the fields of distinct climatological variables. Using coupled climate subnetworks to investigate the terrestrial atmosphere's three-dimensional geopotential height field uncovers known as well as interesting novel features of the atmosphere's vertical stratification and general circulation. Specifically, the new measure "cross-betweenness" identifies regions which are particularly important for mediating vertical wind field interactions. The promising results obtained by following the coupled climate subnetwork approach present a first step towards an improved understanding of the Earth system and its complex interacting components from a network perspective

    Crowding by Invisible Flankers

    Get PDF
    BACKGROUND: Human object recognition degrades sharply as the target object moves from central vision into peripheral vision. In particular, one's ability to recognize a peripheral target is severely impaired by the presence of flanking objects, a phenomenon known as visual crowding. Recent studies on how visual awareness of flanker existence influences crowding had shown mixed results. More importantly, it is not known whether conscious awareness of the existence of both the target and flankers are necessary for crowding to occur. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that crowding persists even when people are completely unaware of the flankers, which are rendered invisible through the continuous flash suppression technique. Contrast threshold for identifying the orientation of a grating pattern was elevated in the flanked condition, even when the subjects reported that they were unaware of the perceptually suppressed flankers. Moreover, we find that orientation-specific adaptation is attenuated by flankers even when both the target and flankers are invisible. CONCLUSIONS: These findings complement the suggested correlation between crowding and visual awareness. What's more, our results demonstrate that conscious awareness and attention are not prerequisite for crowding

    Density Distribution in the Liquid Hg-Sapphire Interface

    Full text link
    We present the results of a computer simulation study of the liquid density distribution normal to the interface between liquid Hg and the reconstructed (0001) face of sapphire. The simulations are based on an extension of the self-consistent quantum Monte Carlo scheme previously used to study the structure of the liquid metal-vapor interface. The calculated density distribution is in very good agreement with that inferred from the recent experimental data of Tamam et al (J. Phys. Chem. Lett. 1, 1041-1045 (2010)). We conclude that, to account for the difference in structure between the liquid Hg-vapor and liquid-Hg-reconstructed (0001) Al2O3 interfaces, it is not necessary assume there is charge transfer from the Hg to the Al2O3. Rather, the available experimental data are adequately reproduced when the van der Waals interactions of the Al and O atoms with Hg atoms and the exclusion of electron density from Al2O3 via repulsion of the electrons from the closed shells of the ions in the solid are accounted for.Comment: 26 pages, 11 figure

    Optimization of the Strength-Fracture Toughness Relation in Particulate-Reinforced Aluminum Composites via Control of the Matrix Microstructure

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1007/s11661-998-0119-9The evolution of the microstructure and mechanical properties of a 17.5 vol. pct SiC particulatereinforced aluminum alloy 6092-matrix composite has been studied as a function of postfabrication processing and heat treatment. It is demonstrated that, by the control of particulate distribution, matrix grain, and substructure and of the matrix precipitate state, the strength-toughness combination in the composite can be optimized over a wide range of properties, without resorting to unstable, underaged (UA) matrix microstructures, which are usually deemed necessary to produce a higher fracture toughness than that displayed in the peak-aged condition. Further, it is demonstrated that, following an appropriate combination of thermomechanical processing and unconventional heat treatment, the composite may possess better stiffness, strength, and fracture toughness than a similar unreinforced alloy. In the high- and low-strength matrix microstructural conditions, the matrix grain and substructure were found to play a substantial role in determining fracture properties. However, in the intermediate- strength regime, properties appeared to be optimizable by the utilization of heat treatments only. These observations are rationalized on the basis of current understanding of the grain size dependence of fracture toughness and the detailed microstructural features resulting from thermomechanical treatments.United States Army Research OfficeArmy Research LabratoryUnited States Air Force Office of Scientific ResearchWright Materials LabratoryDWA Composite

    Transcultural adaptation of the Emotion Matching Task: an emotion neuropsychological assessment

    Get PDF
    Emotions play a central role in children’s relationships. Deficits in emotional understanding have been associated with several neuropsychiatric disorders. In Brazil, however, few psychological instruments are available to assess young children’s emotional development. The objective of the present study was to make a transcultural adaptation of the Emotion Matching Task (EMT). The EMT was translated and adapted by a team of bilingual researches and then back-translated to English. The preliminary versions were assessed by EMT’s authors and by Brazilians specialized judges. The final version was applied in a sample of 50 children between three and six years of age and answered by nine judges in three Brazilian states. The results indicate good semantic equivalence and good agreement with the answers provided (κ= 0.88, Z=95.2, p<0.001). The final version of the EMT was considered appropriate and satisfactory
    corecore