200 research outputs found

    Singular Points of Reactive Distillation Systems

    No full text
    For the conceptual design of countercurrently operated reactive distillation columns, fast methods are needed to estimate potential top and bottom products. The possible column bottom product composition can be determined from the stable singular points of a batch reactive reboiler. In a similar manner the top product composition can be obtained from the stable singular points of a batch reactive condenser. Geometrically, the singular points of both batch processes are located on a common potential singular point surface (PSPS) whose trajectory depends on the reaction stoichiometry and the phase equilibria. At the singular points, the PSPS intersects a reaction kinetic surface that is dependent on the reaction rate expression and the phase equilibrium of a reference component. Based on the singularity analysis, a single-feed reactive distillation column can be designed. Several hypothetical and real reaction systems are analyzed to illustrate the singularity analysis and the design procedure. Copyright © 1999–2013 John Wiley & Sons, Inc. All Rights Reserved. [accessed 2013 August 15th

    The roles of the subunits in the function of the calcium channel

    Get PDF
    Dihydropyridine-sensitive voltage-dependent L-type calcium channels are critical to excitation-secretion and excitation-contraction coupling. The channel molecule is a complex of the main, pore-forming subunit alpha 1 and four additional subunits: alpha 2, delta, beta, and gamma (alpha 2 and delta are encoded by a single messenger RNA). The alpha 1 subunit messenger RNA alone directs expression of functional calcium channels in Xenopus oocytes, and coexpression of the alpha 2/delta and beta subunits enhances the amplitude of the current. The alpha 2, delta, and gamma subunits also have pronounced effects on its macroscopic characteristics, such as kinetics, voltage dependence of activation and inactivation, and enhancement by a dihydropyridine agonist. In some cases, specific modulatory functions can be assigned to individual subunits, whereas in other cases the different subunits appear to act in concert to modulate the properties of the channel

    Characterisation of retroviruses in the horse genome and their transcriptional activity via transcriptome sequencing

    Get PDF
    The recently released draft horse genome is incompletely characterised in terms of its repetitive element profile. This paper presents characterisation of the endogenous retrovirus (ERVs) of the horse genome based on a data-mining strategy using murine leukaemia virus proteins as queries. 978 ERV gene sequences were identified. Sequences were identified from the gamma, epsilon and betaretrovirus genera. At least one full length gammaretroviral locus was identified, though the gammaretroviral sequences are very degenerate. Using these data the RNA expression of these ERVs were derived from RNA transcriptome data from a variety of equine tissues. Unlike the well studied human and murine ERVs there do not appear to be particular phylogenetic groups of equine ERVs that are more transcriptionally active. Using this novel approach provided a more technically feasible method to characterise ERV expression than previous studies

    Microarray-Based Sketches of the HERV Transcriptome Landscape

    Get PDF
    Human endogenous retroviruses (HERVs) are spread throughout the genome and their long terminal repeats (LTRs) constitute a wide collection of putative regulatory sequences. Phylogenetic similarities and the profusion of integration sites, two inherent characteristics of transposable elements, make it difficult to study individual locus expression in a large-scale approach, and historically apart from some placental and testis-regulated elements, it was generally accepted that HERVs are silent due to epigenetic control. Herein, we have introduced a generic method aiming to optimally characterize individual loci associated with 25-mer probes by minimizing cross-hybridization risks. We therefore set up a microarray dedicated to a collection of 5,573 HERVs that can reasonably be assigned to a unique genomic position. We obtained a first view of the HERV transcriptome by using a composite panel of 40 normal and 39 tumor samples. The experiment showed that almost one third of the HERV repertoire is indeed transcribed. The HERV transcriptome follows tropism rules, is sensitive to the state of differentiation and, unexpectedly, seems not to correlate with the age of the HERV families. The probeset definition within the U3 and U5 regions was used to assign a function to some LTRs (i.e. promoter or polyA) and revealed that (i) autonomous active LTRs are broadly subjected to operational determinism (ii) the cellular gene density is substantially higher in the surrounding environment of active LTRs compared to silent LTRs and (iii) the configuration of neighboring cellular genes differs between active and silent LTRs, showing an approximately 8 kb zone upstream of promoter LTRs characterized by a drastic reduction in sense cellular genes. These gathered observations are discussed in terms of virus/host adaptive strategies, and together with the methods and tools developed for this purpose, this work paves the way for further HERV transcriptome projects

    In vitro toxicokinetics and analytical toxicology of three novel NBOMe derivatives - Phase I and II metabolism, plasma protein binding, and detectability in standard urine screening approaches studied by means of hyphenated mass spectrometry

    Get PDF
    Purpose Toxicokinetic studies are essential in clinical and forensic toxicology to understand drug-drug interactions, influence of individual polymorphisms, and elimination routes, as well as to evaluate targets for toxicological screening procedures. An N-(2-methoxybenzyl)-substituted phenethylamines (NBOMe analogues) intake has been associated with severe adverse reactions including deaths. 1-(1-Benzofuran-5-yl)-N-[(2-methoxyphenyl)methyl]propan-2-amine (5-APB-NBOMe), 2-(8-bromo-2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b′]difuran-4-yl)-N-[(5-chloro-2-ethoxyphenyl)methyl]ethan-1-amine (2C-B-FLY-NB2EtO5Cl), and 2-(8-bromo-2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b′]difuran-4-yl)-N-[(2-methoxyphenyl)methyl]ethan-1-amine (2C-BFLY-NBOMe) are three emerging NBOMe analogues, which have encountered on the drugs of abuse market. So far, their toxicokinetic data are completely unexplored. Methods The study included mass spectrometry-based identification of phase I and II metabolites following exposure to the terminally differentiated human hepatocellular carcinoma cells (HepaRG). The determination of enzymes involved in the major phase I/II metabolic steps and determination of plasma protein binding (PPB) was done. Finally, the evaluation of the toxicological detectability by different hyphenated mass spectrometry techniques in standard urine screening approaches (SUSAs) was investigated. Results The compounds were extensively metabolized in HepaRG cells mainly via O-dealkylation, hydroxylation, glucuronidation, and combinations thereof. CYP1A2, 2D6, 2C8, 2C19, and 3A4, were involved in the initial reactions of all investigated compounds. Glucuronidation of the phase I metabolites – when observed - was mainly catalyzed by UGT1A9. The PPB of all compounds was determined to be > 85%. Only the high-resolution mass spectrometry-based SUSA allowed detection of all compounds in rat urine but only via metabolites. Conclusions The toxicokinetic data provided by this study will help forensic and clinical toxicologists to reliably identify these substances in case of abuse and/or intoxication and will allow them a thorough risk assessment

    Transcriptional profiling of HERV-K(HML-2) in amyotrophic lateral sclerosis and potential implications for expression of HML-2 proteins

    Get PDF
    Abstract Background Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder. About 90% of ALS cases are without a known genetic cause. The human endogenous retrovirus multi-copy HERV-K(HML-2) group was recently reported to potentially contribute to neurodegeneration and disease pathogenesis in ALS because of transcriptional upregulation and toxic effects of HML-2 Envelope (Env) protein. Env and other proteins are encoded by some transcriptionally active HML-2 loci. However, more detailed information is required regarding which HML-2 loci are transcribed in ALS, which of their proteins are expressed, and differences between the disease and non-disease states. Methods For brain and spinal cord tissue samples from ALS patients and controls, we identified transcribed HML-2 loci by generating and mapping HML-2-specific cDNA sequences. We predicted expression of HML-2 env gene-derived proteins based on the observed cDNA sequences. Furthermore, we determined overall HML-2 transcript levels by RT-qPCR and investigated presence of HML-2 Env protein in ALS and control tissue samples by Western blotting. Results We identified 24 different transcribed HML-2 loci. Some of those loci are transcribed at relatively high levels. However, significant differences in HML-2 loci transcriptional activities were not seen when comparing ALS and controls. Likewise, overall HML-2 transcript levels, as determined by RT-qPCR, were not significantly different between ALS and controls. Indeed, we were unable to detect full-length HML-2 Env protein in ALS and control tissue samples despite reasonable sensitivity. Rather our analyses suggest that a number of HML-2 protein variants other than full-length Env may potentially be expressed in ALS patients. Conclusions Our results expand and refine recent publications on HERV-K(HML-2) and ALS. Some of our results are in conflict with recent findings and call for further specific analyses. Our profiling of HML-2 transcription in ALS opens up the possibility that HML-2 proteins other than canonical full-length Env may have to be considered when studying the role of HML-2 in ALS disease
    corecore