38 research outputs found

    Thermoregulation is not impaired in breast cancer survivors during moderate-intensity exercise performed in warm and hot environments

    Get PDF
    This study aimed to assess how female breast cancer survivors (BCS) respond physiologically, hematologically, and perceptually to exercise under heat stress compared to females with no history of breast cancer (CON). Twenty‐one females (9 BCS and 12 CON [age; 54 ± 7 years, stature; 167 ± 6 cm, body mass; 68.1 ± 7.62 kg, and body fat; 30.9 ± 3.8%]) completed a warm (25℃, 50% relative humidity, RH) and hot (35℃, 50%RH) trial in a repeated‐measures crossover design. Trials consisted of 30 min of rest, 30 min of walking at 4 metabolic equivalents, and a 6‐minute walk test (6MWT). Physiological measurements (core temperature (T (re)), skin temperature (T (skin)), heart rate (HR), and sweat analysis) and perceptual rating scales (ratings of perceived exertion, thermal sensation [whole body and localized], and thermal comfort) were taken at 5‐ and 10‐min intervals throughout, respectively. Venous blood samples were taken before and after to assess; IL‐6, IL‐10, CRP, IFN‐γ, and TGF‐ÎČ(1). All physiological markers were higher during the 35 versus 25℃ trial; T (re) (~0.25℃, p = 0.002), T (skin) (~3.8℃, p  0.05). Both groups covered a greater 6MWT distance in 25 versus 35℃ (by ~200 m; p = 0.003). Nevertheless, the control group covered more distance than BCS, regardless of environmental temperature (by ~400 m, p = 0.03). Thermoregulation was not disadvantaged in BCS compared to controls during moderate‐intensity exercise under heat stress. However, self‐paced exercise performance was reduced for BCS regardless of environmental temperature

    An individual-based model to explore the impact of psychological stress on immune infiltration into tumour spheroids

    Full text link
    In recent in vitro experiments on co-culture between breast tumour spheroids and activated immune cells, it was observed that the introduction of the stress hormone cortisol resulted in a decreased immune cell infiltration into the spheroids. Moreover, the presence of cortisol deregulated the normal levels of the pro- and anti-inflammatory cytokines IFN-{\gamma} and IL-10. We present an individual-based model to explore the interaction dynamics between tumour and immune cells under psychological stress conditions. With our model, we explore the processes underlying the emergence of different levels of immune infiltration, with particular focus on the biological mechanisms regulated by IFN-{\gamma} and IL-10. The set-up of numerical simulations is defined to mimic the scenarios considered in the experimental study. Similarly to the experimental quantitative analysis, we compute a score that quantifies the level of immune cell infiltration into the tumour. The results of numerical simulations indicate that the motility of immune cells, their capability to infiltrate through tumour cells, their growth rate and the interplay between these cell parameters can affect the level of immune cell infiltration in different ways. Ultimately, numerical simulations of this model support a deeper understanding of the impact of biological stress-induced mechanisms on immune infiltration

    An integrated framework for quantifying immune-tumour interactions in a 3D co-culture model

    Get PDF
    Investigational in vitro models that reflect the complexity of the interaction between the immune system and tumours are limited and difficult to establish. Herein, we present a platform to study the tumour-immune interaction using a co-culture between cancer spheroids and activated immune cells. An algorithm was developed for analysis of confocal images of the co-culture to evaluate the following quantitatively; immune cell infiltration, spheroid roundness and spheroid growth. As a proof of concept, the effect of the glucocorticoid stress hormone, cortisol was tested on 66CL4 co-culture model. Results were comparable to 66CL4 syngeneic in vivo mouse model undergoing psychological stress. Furthermore, administration of glucocorticoid receptor antagonists demonstrated the use of this model to determine the effect of treatments on the immune-tumour interplay. In conclusion, we provide a method of quantifying the interaction between the immune system and cancer, which can become a screening tool in immunotherapy design

    Sexual Size Dimorphism and Body Condition in the Australasian Gannet

    Get PDF
    Funding: The research was financially supported by the Holsworth Wildlife Research Endowment. Acknowledgments We thank the Victorian Marine Science Consortium, Sea All Dolphin Swim, Parks Victoria, and the Point Danger Management Committee for logistical support. We are grateful for the assistance of the many field volunteers involved in the study.Peer reviewedPublisher PD

    The sphingosine 1‐phosphate analogue, FTY720, modulates the lipidomic signature of the mouse hippocampus

    Get PDF
    The small‐molecule drug, FTY720 (fingolimod), is a synthetic sphingosine 1‐phosphate (S1P) analogue currently used to treat relapsing–remitting multiple sclerosis in both adults and children. FTY720 can cross the blood–brain barrier (BBB) and, over time, accumulate in lipid‐rich areas of the central nervous system (CNS) by incorporating into phospholipid membranes. FTY720 has been shown to enhance cell membrane fluidity, which can modulate the functions of glial cells and neuronal populations involved in regulating behaviour. Moreover, direct modulation of S1P receptor‐mediated lipid signalling by FTY720 can impact homeostatic CNS physiology, including neurotransmitter release probability, the biophysical properties of synaptic membranes, ion channel and transmembrane receptor kinetics, and synaptic plasticity mechanisms. The aim of this study was to investigate how chronic FTY720 treatment alters the lipid composition of CNS tissue in adolescent mice at a key stage of brain maturation. We focused on the hippocampus, a brain region known to be important for learning, memory, and the processing of sensory and emotional stimuli. Using mass spectrometry‐based lipidomics, we discovered that FTY720 increases the fatty acid chain length of hydroxy‐phosphatidylcholine (PCOH) lipids in the mouse hippocampus. It also decreases PCOH monounsaturated fatty acids (MUFAs) and increases PCOH polyunsaturated fatty acids (PUFAs). A total of 99 lipid species were up‐regulated in the mouse hippocampus following 3 weeks of oral FTY720 exposure, whereas only 3 lipid species were down‐regulated. FTY720 also modulated anxiety‐like behaviours in young mice but did not affect spatial learning or memory formation. Our study presents a comprehensive overview of the lipid classes and lipid species that are altered in the hippocampus following chronic FTY720 exposure and provides novel insight into cellular and molecular mechanisms that may underlie the therapeutic or adverse effects of FTY720 in the central nervous system

    Accelerated surgery versus standard care in hip fracture (HIP ATTACK): an international, randomised, controlled trial

    Get PDF

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    C57BL/6 mice are resistant to acute restraint modulation of cutaneous hypersensitivity

    No full text
    C57BL/6 mice, in contrast to BALB/c mice, display minimal behavioral changes in response to environmental stressors and are considered relatively stress-resistant. We have shown that appli-cation of acute restraint prior to chemical challenge enhanced cutaneous hypersensitivity (CHS) in BALB/c mice and that this enhanced response is partially glucocorticoid dependent. Due to strain differences in the immune response and in the response to environmental stressors, we hypothesized that acute restraint would not enhance CHS in the less stress-sensitive C57BL/6 mice. We sensitized and challenged C57BL/6 mice with the contact sensitizer, 2, 4-dinitrofluorobenzene (DNFB) in the presence and absence of restraint. Acute restraint, applied prior to chemical challenge, significantly increased serum corticosterone, but to con-centrations approximately 60 % of those reported for BALB/c mice. Neither restraint nor the exogenous administration of corticoste
    corecore